


What is the life cycle of stars?



Average binding energy per nucleon (MeV)

Stars are like nuclear reactors
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Average binding energy per nucleon (MeV)

Nuclear vs. EM forces
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Average binding energy per nucleon (MeV)

Ways to get energy from nuclel
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Average binding energy per nucleon (MeV)

Quantum tunneling

Fusion:

* |In stars gravity
confines the plasma
enabling stable fusion
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Why do luminosities vary
so much!?
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fusion rates are VERY temperature sensitive



Hydrostatic
Equilibrium:
Energy supplied
by fusion pushes
out against the
inward crush of
gravity



H->He fusing stars form
the Main Sequence!
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How to put a star on HR diagram?
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How to put a star on HR diagram?

We can guess temperature from
the star's color
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How to put a star on HR diagram?

We can see how bright the star is. Need
to know distance to compute the star's
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How to put a star on HR diagram?
We know distance from parallax
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Gaia space probe measures
parallaxes and colors of stars

of Cepheids
in the

- Milky Way
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Gaia G absolute magnitude
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How to put a star on HR diagram?

We can model life of a star on a computer

The following plots are made with the
MESA/MIST stellar evolution code:

http://waps.cfa.harvard.edu/MIST/

MIS T


http://waps.cfa.harvard.edu/MIST/
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Red Giants: Broken Thermostat

\ * As the core contracts,
H begins fusing to He
o enes o [ In a shell around the
'- o core.

» Luminosity increases
because the core
thermostat is broken—
the increasing fusion
rate in the shell does
not stop the core from
contracting.

expanding cantracting inart
photosphere helium core

star expanding
into red giant

hydrogen
shell fusion
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Helium fusion does not begin right away
because it requires higher temperatures than
hydrogen fusion—Ilarger charge leads to greater
repulsion.

Fusion of two helium nuclei doesn't work, so
helium fusion must combine three helium nuclei
to make carbon.
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Nuclear vs. EM forces
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planetary nebula sl £ B




White Dwarf = exposed degenerate
core of a solar-type star

Sirius A

Sirius B
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Stars often born in clusters
There are two types: and Open

Pleiades




Two other examples of star clusters
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Gaia HR: old OC vs “young” GC

Open Cluster M 67 | “"“-%
Globular Cluster 47 Tuc o i

0.0 0.5 1.0 15 2.0 2.5
Ggp - GRp



Two factors: age and metallicity
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Gaia HR: open clusters
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Isochrones: HR positions of same-age stars
M67
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Isochrones: HR positions of same-age stars

Pleiades

10|

12 -




Ma

Gaia HR: globular clusters
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Summary

* Mass, age and metallicity determine
luminosity and temperature of a star

e Stars in clusters are born the same
time and are at the same distance from
us - useful for comparing with stellar
evolution models

 White Dwarf is the evolutionary end
point of a solar-type star
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