

What is the life cycle of stars?

Stars are like nuclear reactors

Nuclear vs. EM forces

Ways to get energy from nuclei

Ways to get energy from nuclei

Quantum tunneling

H->He Fusion **p-p reaction**

Why do luminosities vary so much?

fusion rates are VERY temperature sensitive

Hydrostatic **Equilibrium: Energy supplied** by fusion pushes out against the inward crush of gravity

H->He fusing stars form the Main Sequence!

How to put a star on HR diagram?

How to put a star on HR diagram? We can guess temperature from the star's **color**

How to put a star on HR diagram? We can see how bright the star is. Need to know **distance** to compute the star's Luminosity High Mass $A = 4 \pi r^2$ 10⁶ 104 Luminosity (L_{sun}) **10**² **10**-2 Low Mass 10-4 40,000 20,000 10,000 5,000 2,500 Temperature (K)

How to put a star on HR diagram? We know distance from parallax

Gaia space probe measures parallaxes and colors of stars

HR diagram from Gaia

Gaia G absolute magnitude

Gaia G absolute magnitude

How to put a star on HR diagram?

We can model life of a star on a computer

The following plots are made with the MESA/MIST stellar evolution code: http://waps.cfa.harvard.edu/MIST/

Red Giants: Broken Thermostat

- As the core contracts, H begins fusing to He in a shell around the core.
- Luminosity increases because the core thermostat is broken the increasing fusion rate in the shell does not stop the core from contracting.

- Helium fusion does not begin right away because it requires higher temperatures than hydrogen fusion—larger charge leads to greater repulsion.
- Fusion of two helium nuclei doesn't work, so helium fusion must combine three helium nuclei to make carbon.

Nuclear vs. EM forces

Ejected red giant atmosphere = planetary nebula

Ejected red giant atmosphere = planetary nebula

White Dwarf = exposed degenerate core of a solar-type star

Temperature

Stars often born in clusters There are two types: Globular and Open Omega Centauri Pleiades

Two other examples of star clusters There are two types: Globular and Open 47 Tucanae M67

Gaia HR: old OC vs "young" GC

Two factors: age and metallicity

Gaia HR: open clusters

Gaia HR: open clusters

Isochrones: HR positions of same-age stars

Gaia HR: globular clusters

Summary

- Mass, age and metallicity determine luminosity and temperature of a star
- Stars in clusters are born the same time and are at the same distance from us - useful for comparing with stellar evolution models
- White Dwarf is the evolutionary end point of a solar-type star