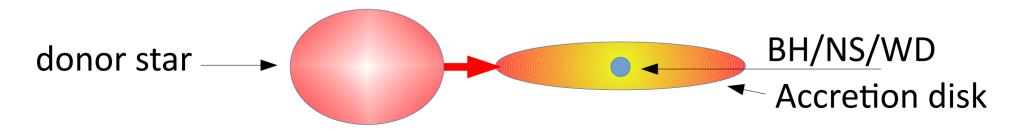
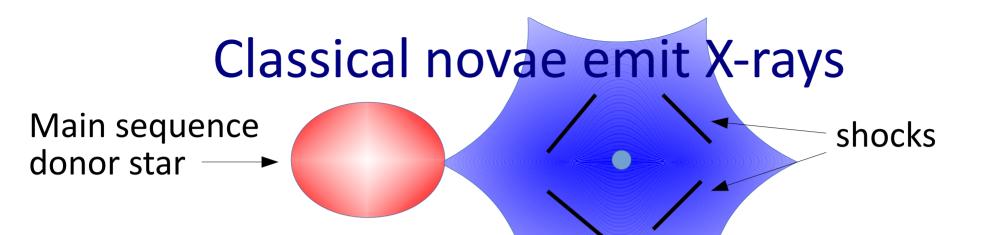

Classical novae as X-ray transients

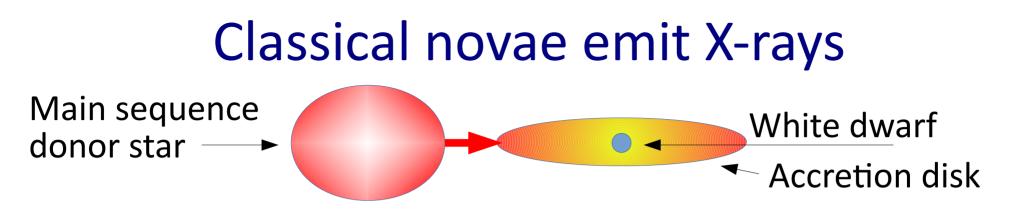


Swift/XRT images of Nova Cir 2018, 50 to 400 days post-explosion

<u>Kirill Sokolovsky</u>, Elias Aydi, Laura Chomiuk, Adam Kawash (Michigan State University), Koji Mukai (NASA/GSFC), Raimundo Lopes (Universidade Federal de Sergipe), Thomas Nelson (University of Pittsburgh), Brian D. Metzger, Elad Steinberg (Columbia University)


Classical novae are not...

- X-ray novae BH/NS binary + disk instability; V404 Cyg
- Dwarf novae as above, but with WD; SS Cyg
- Symbiotic novae WD accreting from RG (wind), slow (years) thermonuclear-powered outburst; V1016 Cyg
- Classical novae in WD + RG system fast thermonuclear outburst, ejecta slams in RG wind; V407 Cyg


- X-ray fireball in first hours of explosion (never observed)
- Shock waves heat plasma and accelerate particles weeks-months after explosion
- Hydrogen-burning white dwarf "Super-Soft Source"
- When accretion restarts, the gas hitting WD surface gets shocked and heated to X-ray temperatures

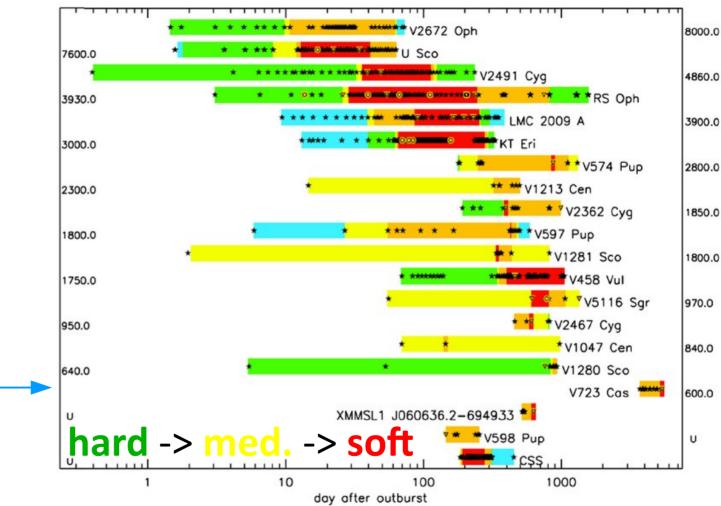
- X-ray fireball in first hours of explosion (never observed)
- Shock waves heat plasma and accelerate particles weeks-months after explosion (recall talks by Elias, Elad!)
- Hydrogen-burning white dwarf "Super-Soft Source"
- When accretion restarts, the gas hitting WD surface gets shocked and heated to X-ray temperatures

- X-ray fireball in first hours of explosion (never observed)
- Shock waves heat plasma and accelerate particles weeks-months after explosion
- Hydrogen-burning white dwarf "Super-Soft Source"
- When accretion restarts, the gas hitting WD surface gets shocked and heated to X-ray temperatures

- X-ray fireball in first hours of explosion (never observed)
- Shock waves heat plasma and accelerate particles weeks-months after explosion
- Hydrogen-burning white dwarf "Super-Soft Source"
- When accretion restarts, the gas hitting WD surface gets shocked and heated to X-ray temperatures

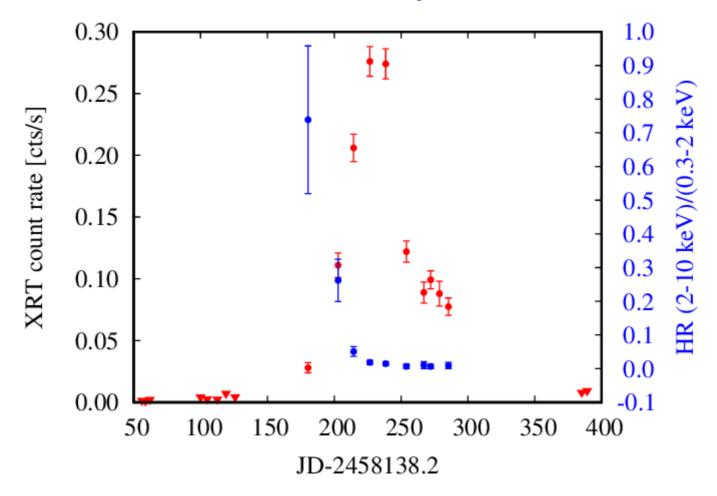
X-ray observatories

Swift (0.3-10 keV): fast repointing
 -> can do long-term monitoring

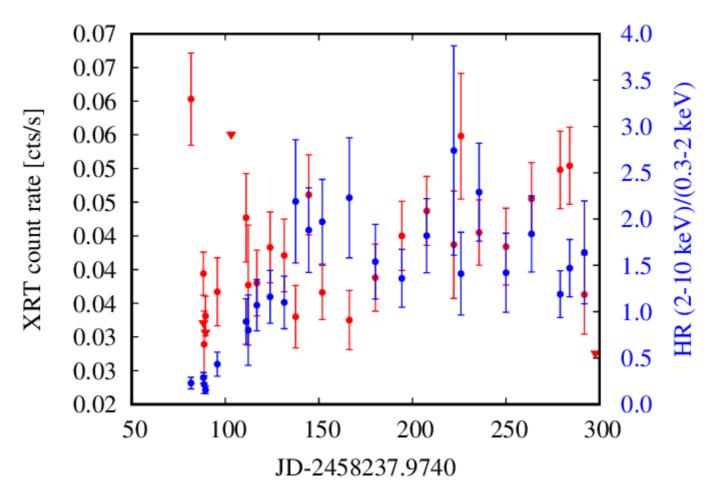

• NuSTAR (3-78 keV): exceptional sensitivity to hard X-rays

 XMM-Newton & Chandra: can do high-resolution spectroscopy with X-ray gratings

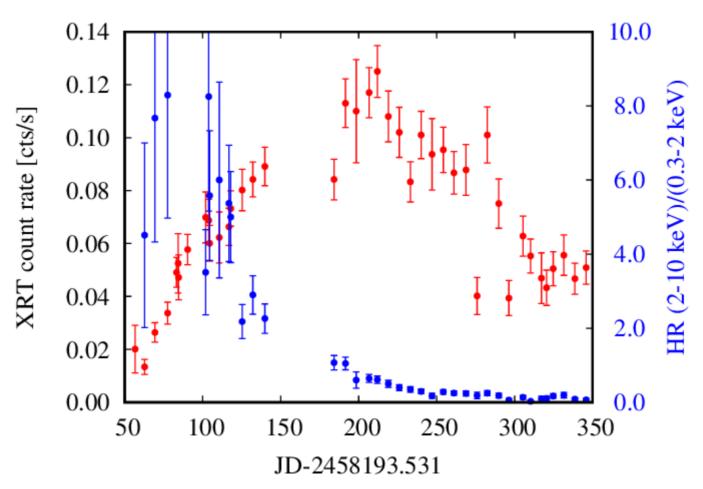
Swift obs. of novae ~100 observed, 60% detected, a few lightcurves **Reviews:** Ness et al. (2007),

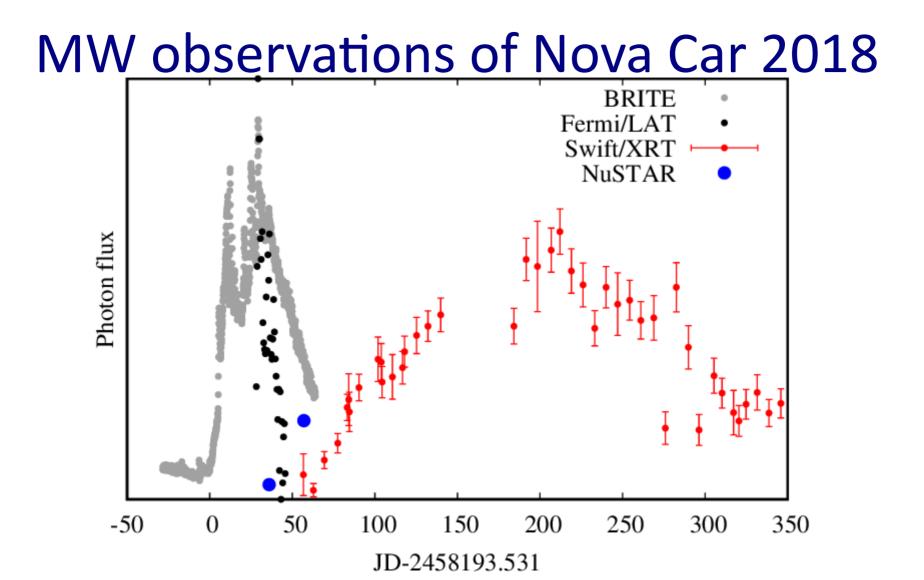

Schwarz et al. (2011)

Osborne (2015)

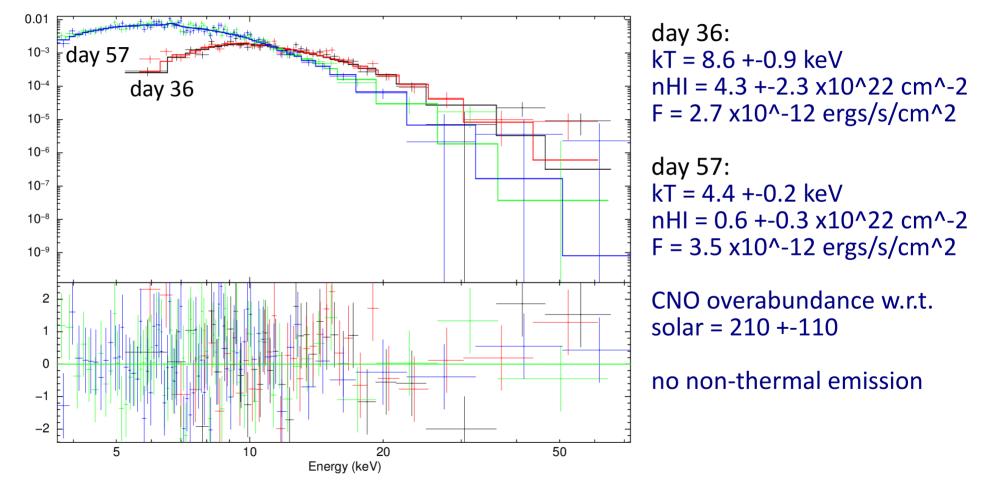


The pattern of X-ray emission in novae observed by Swift, ordered top to bottom by high to low optical emission line FWHM. Observations are shown by stars, intervals are colour coded by X-ray spectral state: blue = undetected; green = hard; yellow = intermediate; orange = most likely soft; red = soft. (From Schwarz et al., 2011).


Nova Cir 2018: Super-Soft Source



V392 Per: accretion??



Nova Car 2018: shocks

Nova Car 2018: NuSTAR spectra

(data-model)/error

NuSTAR observations of novae

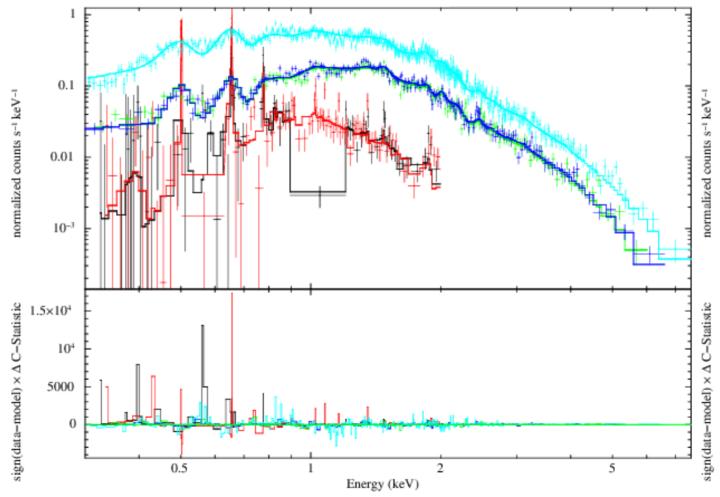
Five novae observed so far:

- V745 Sco (WD+RG) detected (Orio et al. 2015)
- V339 Del not detected (Mukai et al. in prep.)
- V5668 Sgr not detected (Mukai et al. in prep.)
- V5855 Sgr detected while still gamma-ray bright (Nelson et al. 2019)
- Nova Car 2018 detected while still gamma-ray bright
 Consistent with thermal emission in all cases

Summary

- X-ray behavior of novae is very diverse
- They produce soft (<1 keV) and very hard (>10 keV) X rays on timescales of months/year and possibly shorter, fluxes ~10^-11 ergs/s/cm^2
- We don't know how to predict if (and when) a given nova will be X-ray bright and how it relates to brightness in optical/gamma-rays/radio
- We need more well-observed examples

NuSTAR observations of Nova Car 2018


NuSTAR observing log

ObsID	Epoch	Start	Stop	Exposure	Exposure	Net count rate	Net count rate
	(days)	UT	UT	FPMA (ks)	FPMB (ks)	FPMA (cts/s)	FPMB (cts/s)
80301306002 90401322002	36.3 57.2	2018-04-20 14:46 2018-05-11 16:26	2018-04-22 02:01 2018-05-12 18:01	48.8 47.5	48.5 47.4	$\begin{array}{c} 0.01582 \pm 0.00066 \\ 0.04343 \pm 0.00102 \end{array}$	$\begin{array}{c} 0.01630 \pm 0.00067 \\ 0.04184 \pm 0.00101 \end{array}$

Column designation: Col. 1 – observation identification number; Col. 2 – time since outburst; Col. 3 and 4 – start and stop time of the observation (interrupted by Earth occultations and South Atlantic Anomaly passes); Col. 5 and 6 – total on-source exposure time for FPMA and FPMB, respectively; Col. 7 and 8 – source count rate (background-subtracted) for FPMA and FPMB, respectively.

constant*vphabs*vapec model for the two NuSTAR observations								
Epoch	n_{HI}	kT	CNO	$C_{\rm FPMB}$	Model $3.5-78.0 \mathrm{keV}$			
(days)	$(\times 10^{22}{\rm cm}^{-2})$	(keV)	abundances		flux $\log_{10}(\text{ergs}/\text{cm}^2/\text{s})$			
$\chi^2_{\rm red} = 1.0457, {\rm d.o.f.} = 199, p = 0.31$								
36	4.287 ± 2.288	8.59 ± 0.88	209.6 ± 110.4	1.107 ± 0.062	-11.564 ± 0.012			
57	0.568 ± 0.288	4.38 ± 0.17		1.006 ± 0.034	-11.454 ± 0.007			

XMM observations of Nova Car 2018

	Case 1	Case 2	Case 3	Case 4	Case 5
	EPIC+RGS	EPIC+RGS	EPIC+RGS	RGS	RGS
PHABS					
$N_H (\times 10^{21} {\rm cm}^{-2})$	$1.8^{+0.3}_{-0.2}$	$1.8^{+0.2}_{-0.2}$	$2.4^{+0.4}_{-0.3}$	$2.1^{+0.5}_{-1.0}$	$2.0^{+2.1}_{-1.0}$
VPHABS					
$N_H (\times 10^{21} \mathrm{cm}^{-2})$	$0.08\substack{+0.02\\-0.02}$	$0.13\substack{+0.03\\-0.02}$	$0.12^{+0.03}_{-0.03}$	< 0.4	< 0.4
BVAPEC					
kT (keV)	$1.06\substack{+0.01\\-0.01}$	$1.11^{+0.01}_{-0.01}$	$1.07\substack{+0.04\\-0.01}$	$0.79\substack{+0.04\\-0.10}$	$0.98\substack{+0.15\\-0.12}$
redshift	$(-2.9\pm0.1)\times10^{-3}$	$(-2.9\pm0.2)\times10^{-3}$	$-2.9 \times 10^{-3*}$	$(-3.1\pm0.2)\times10^{-3}$	$-2.9 \times 10^{-3(*)}$
velocity $(\rm kms^{-1})$	$394{\pm}70$	378 ± 72	$378^{(*)}$	386^{+72}_{-76}	378^{*}
N/N _o	$728^{+232}_{-150}\\30^{+7}_{-6}$	403^{+99}_{-73}	345^{+93}_{-70}	230^{+236}_{-81} 14^{+15}_{-5}	212^{+197}_{-87}
$\rm O/O_{\odot}$	30_{-6}^{+7}	24^{+4}_{-5}	29^{+7}_{-5}	14^{+15}_{-5}	17^{+12}_{-5}
$\rm Ne/Ne_{\odot}$	$0.7^{+0.6}_{-0.5}$	$2.3_{-0.5}^{+0.6}$	$2.2^{+0.6}_{-0.5}$	$1.1^{+1.3}_{-0.5}$	$1.5^{+1.3}_{-0.7}$
Mg/Mg_{\odot}	$1.0^{+0.2}_{-0.2}$	$0.7_{-0.1}^{+0.2}$	$0.6_{-0.1}^{+0.2}$	$1.0^{+1.0}_{-0.3}$	$0.9_{-0.3}^{+0.6}$
$\rm Si/Si_{\odot}$	$1.6_{-0.3}^{+0.4}$	$2.3^{+0.6}_{-0.5}\ 0.7^{+0.2}_{-0.1}\ 1.2^{+0.2}_{-0.2}$	$2.2^{+0.6}_{-0.5}$ $0.6^{+0.2}_{-0.1}$ $1.1^{+0.2}_{-0.2}$	${\begin{array}{c}{}^{+1.3}\\1.1 {}^{+1.3}_{-0.5}\\1.0 {}^{+1.0}_{-0.3}\\1.0 {}^{+2.1}_{-0.7}\end{array}}$	$212_{-87}^{+197} \\ 17_{-5}^{+12} \\ 1.5_{-0.7}^{+1.3} \\ 0.9_{-0.3}^{+0.6} \\ 2.0_{-0.5}^{+1.3} \\ \end{array}$
$\frac{\text{Fe}/\text{Fe}_{\odot}}{\chi^2_{\nu}}$	$\begin{array}{c} 0.7^{+0.6}_{-0.5} \\ 1.0^{+0.2}_{-0.2} \\ 1.6^{+0.4}_{-0.3} \\ 0.17^{+0.08}_{-0.05} \end{array}$	< 0.1	< 0.1	< 0.13	< 0.04
χ^2_{ν}	1.25	1.16	1.15	1.01	1.01
d.o.f.	1847	1488	1837	987	977

Notes:

Model CONSTANT*PHABS*VPHABS*BVAPEC in four different cases:

Case 1: in the whole spectral coverage, without Gaussian lines;

Case 2: excluding spectral regions associated with (r,i,f) lines: 0.4-0.45 keV, 0.55-0.6 keV, 0.85-0.95 keV, and 1.3-1.4 keV;

Case 3: in the whole spectral coverage, including Gaussian lines associated with r,i,f lines (Table 3);

Case 4: only RGS, without Gaussian lines;

Case 5: only RGS, with Gaussian lines associated with r,i,f lines (Table 3);

Abundance table: aspl: Asplund M, Grevesse N., Sauval A.J. & Scott P., 2009, ARAA, 47, 481;