X-ray spectroscopy of the brightest y-ray nova ASASSN-18fv

Swift/XRT images of a nova 50 to 400 days post-explosion

Kirill Sokolovsky, Elias Aydi, Laura Chomiuk, Adam Kawash (Michigan State University), Koji Mukai (NASA/GSFC), Raimundo Lopes (Universidade Federal de Sergipe), Thomas Nelson (University of Pittsburgh), Brian D. Metzger, Elad Steinberg (Columbia University)

- X-ray fireball in first hours of explosion (never observed)
- Shock waves heat plasma and accelerate particles weeks-months after explosion
- Hydrogen-burning white dwarf "Super-Soft Source"
- When accretion restarts, the gas hitting WD surface gets shocked and heated to X-ray temperatures

- X-ray fireball in first hours of explosion (never observed)
- Shock waves heat plasma and accelerate particles weeks-months after explosion
- Hydrogen-burning white dwarf "Super-Soft Source"
- When accretion restarts, the gas hitting WD surface gets shocked and heated to X-ray temperatures

- X-ray fireball in first hours of explosion (never observed)
- Shock waves heat plasma and accelerate particles weeks-months after explosion
- Hydrogen-burning white dwarf "Super-Soft Source"
- When accretion restarts, the gas hitting WD surface gets shocked and heated to X-ray temperatures

- X-ray fireball in first hours of explosion (never observed)
- Shock waves heat plasma and accelerate particles weeks-months after explosion
- Hydrogen-burning white dwarf "Super-Soft Source"
- When accretion restarts, the gas hitting WD surface gets shocked and heated to X-ray temperatures

- Swift (0.3-10 keV): fast repointing
 - -> can do long-term monitoring

 NuSTAR (3-78 keV): exceptional sensitivity to hard X-rays

 XMM-Newton & Chandra: can do high-resolution spectroscopy with X-ray gratings

Nova Cir 2018: Super-Soft Source

V392 Per: accretion-powered X-rays?

ASASSN-18fv: shocks to Super-Soft

ASASSN-18fv: shocks to Super-Soft

ASASSN-18fv = N Car 2018 = V906 Car

ASASSN-18fv and η Car nebula imaged by Joseph Brimacombe

Discovered 2018-03-20.32 UT by the <u>ASAS-SN survey</u>

ASASSN-18fv = N Car 2018 = V906 Car

ASASSN-18fv and η Car nebula imaged by Joseph Brimacombe

Discovered 2018-03-20.32 UT by the <u>ASAS-SN survey</u>

MW observations of ASASSN-18fv

Nova Car 2018: NuSTAR spectra

day 36:

kT = 8.6 +-0.9 keV nHI = 4.3 +-2.3 x10^22 cm^-2 F = 2.7 x10^-12 ergs/s/cm^2

day 57:

kT = 4.4 +-0.2 keV nHI = 0.6 +-0.3 x10^22 cm^-2 F = 3.5 x10^-12 ergs/s/cm^2

CNO overabundance w.r.t. solar = 210 +-110

no non-thermal emission

NuSTAR observations of novae

Five novae observed so far:

- **V745 Sco** (WD+RG) detected (Orio et al. 2015)
- V339 Del not detected (Mukai et al. in prep.)
- V5668 Sgr not detected (Mukai et al. in prep.)
- V5855 Sgr detected while still γ-ray bright (Nelson et al. 2019)
- ASASSN-18fv detected while still γ-ray bright

Consistent with thermal emission in all cases

XMM observations of ASASSN-18fv

constant*phabs*vphabs*bvapec

	EPIC+RGS
PHABS $N_H (\times 10^{21} \text{ cm}^{-2})$	$2.4^{+0.4}_{-0.3}$
vpнавs N _H (×10 ²¹ cm ⁻²)	$0.12^{+0.03}_{-0.03}$
BVAPEC	0.03
kT (keV) redshift	$1.07_{-0.01}^{+0.04}$ -2.9×10^{-3}
velocity (km s ⁻¹)	378(*)
N/N_{\odot} O/O_{\odot}	$345_{-70}^{+93} \\ 29_{-5}^{+7} \\ 2.2_{-0.5}^{+0.6} \\ 0.6_{-0.1}^{+0.2} \\ 1.1_{-0.2}^{+0.2}$
Ne/Ne _⊙	$2.2^{+0.6}_{-0.5}$
Mg/Mg _⊙	$0.6^{+0.2}_{-0.1}$
Si/Si _⊙ Fe/Fe _⊙	$ \begin{array}{c} 1.1 + 0.2 \\ -0.2 \\ < 0.1 \end{array} $
χ_{ν}^2	1.15
d.o.f.	1837

XMM observations of ASASSN-18fv

constant*phabs*vphabs*bvapec

		EPIC+RGS
	РНАВЅ $N_H \ (\times 10^{21} \ cm^{-2})$	$2.4^{+0.4}_{-0.3}$
	VPHABS $N_H (\times 10^{21} \text{cm}^{-2})$	$0.12^{+0.03}_{-0.03}$
	BVAPEC kT (keV) redshift velocity (km s ⁻¹)	$1.07_{-0.01}^{+0.04}$ $-2.9 \times 10^{-3*}$ $378^{(*)}$
(N/N _☉ O/O _☉ Ne/Ne _☉	$ \begin{array}{c} 345^{+93}_{-70} \\ 29^{+7}_{-5} \\ 2.2^{+0.6} \end{array} $
(Mg/Mg_{\odot} Si/Si_{\odot} Fe/Fe_{\odot}	$\begin{array}{c} 2.2 - 0.5 \\ 0.6^{+0.2}_{-0.1} \\ 1.1^{+0.2}_{-0.2} \\ < 0.1 \end{array}$
ı	χ^2_{ν} d.o.f.	1.15 1837

Outlook

- X-rays provide a **new window on nova physics**
- Shock energy, abundances, ejecta mass, non-thermal emission
- Constrains on particle acceleration from X-ray/GeV
- Where, when and why shocks are formed?
- Relevant for distant shock-powered transients:
 Type IIn SNe, TDEs, stellar mergers

White paper on shocks by **Chomiuk et al.** (2019)

NuSTAR observations of ASASSN-18fv

NuSTAR observing log

ObsID	Epoch (days)	Start UT	Stop UT	Exposure FPMA (ks)	Exposure FPMB (ks)	Net count rate FPMA (cts/s)	Net count rate FPMB (cts/s)
80301306002	36.3	2018-04-20 14:46	2018-04-22 02:01	48.8	48.5	0.01582 ± 0.00066	0.01630 ± 0.00067
90401322002	57.2	2018-05-11 16:26	2018-05-12 18:01	47.5	47.4	0.04343 ± 0.00102	0.04184 ± 0.00101

Column designation: Col. 1 – observation identification number; Col. 2 – time since outburst; Col. 3 and 4 – start and stop time of the observation (interrupted by Earth occultations and South Atlantic Anomaly passes); Col. 5 and 6 – total on-source exposure time for FPMA and FPMB, respectively; Col. 7 and 8 – source count rate (background-subtracted) for FPMA and FPMB, respectively.

constant*vphabs*vapec model for the two NuSTAR observations

Epoch	n_{HI}	kT	CNO	C_{FPMB}	$Model~3.5\text{-}78.0\mathrm{keV}$	
(days)	$(\times 10^{22}{\rm cm}^{-2})$	(keV)	abundances		$flux log_{10} (ergs/cm^2/s)$	
$\chi^2_{\rm red} = 1.0457, \text{d.o.f.} = 199, p = 0.31$						
36	4.287 ± 2.288	8.59 ± 0.88	209.6 ± 110.4	1.107 ± 0.062	-11.564 ± 0.012	
57	0.568 ± 0.288	4.38 ± 0.17		1.006 ± 0.034	-11.454 ± 0.007	

	Case 1	Case 2	Case 3	Case 4	Case 5		
	EPIC+RGS	EPIC+RGS	EPIC+RGS	RGS	RGS		
PHABS							
$N_H (\times 10^{21} \text{cm}^{-2})$	$1.8^{+0.3}_{-0.2}$	$1.8^{+0.2}_{-0.2}$	$2.4^{+0.4}_{-0.3}$	$2.1^{+0.5}_{-1.0}$	$2.0^{+2.1}_{-1.0}$		
VPHABS							
$N_H (\times 10^{21} \text{cm}^{-2})$	$0.08^{+0.02}_{-0.02}$	$0.13^{+0.03}_{-0.02}$	$0.12^{+0.03}_{-0.03}$	< 0.4	< 0.4		
BVAPEC							
kT (keV)	$1.06^{+0.01}_{-0.01}$	$1.11^{+0.01}_{-0.01}$	$1.07^{+0.04}_{-0.01}$	$0.79^{+0.04}_{-0.10}$	$0.98^{+0.15}_{-0.12}$		
redshift	$(-2.9\pm0.1)\times10^{-3}$	$(-2.9\pm0.2)\times10^{-3}$	-2.9×10^{-3} *	$(-3.1\pm0.2)\times10^{-3}$	$-2.9 \times 10^{-3(*)}$		
velocity $(km s^{-1})$	394 ± 70	378 ± 72	$378^{(*)}$	386^{+72}_{-76}	378*		
$ m N/N_{\odot}$	728^{+232}_{-150}	403^{+99}_{-73}	345^{+93}_{-70}	230^{+236}_{-81}	212^{+197}_{-87}		
${ m O/O_{\odot}}$	30^{+7}_{-6}	24^{+4}	29^{+7}	14^{+15}_{-5}	17^{+12}_{-5}		
$\mathrm{Ne/Ne}_{\odot}$	$0.7^{+0.6}_{-0.5}$	$2.3^{+0.6}_{-0.5}$	$2.2^{+0.6}_{-0.5}$	$1.1^{+1.3}_{-0.5}$	$1.5^{+1.3}_{-0.7}$		
${ m Mg/Mg_{\odot}}$	$1.0^{+0.2}_{-0.2}$	$0.7^{+0.2}_{-0.1}$	$0.6_{-0.1}^{+0.2}$	$1.0^{+1.0}_{-0.3}$	$0.9^{+0.6}_{-0.3}$		
$\mathrm{Si/Si}_{\odot}$	$1.6^{+0.4}_{-0.3}$	$1.2^{+0.2}_{-0.2}$	$1.1^{+0.2}_{-0.2}$	$1.0_{-0.7}^{+2.1}$	$2.0_{-0.5}^{+1.3}$		
${ m Fe}/{ m Fe}_{\odot}$	$0.17^{+0.08}_{-0.05}$	< 0.1	< 0.1	< 0.13	< 0.04		
χ^2_{ν}	1.25	1.16	1.15	1.01	1.01		
d.o.f.	1847	1488	1837	987	977		
Noton							
Notes:							
Model CONSTANT*PHABS*VPHABS*BVAPEC in four different cases:							
Case 1: in the whole spectral coverage, without Gaussian lines;							
Case 2: excluding spectral regions associated with (r,i,f) lines: 0.4-0.45 keV, 0.55-0.6 keV, 0.85-0.95 keV,							
and $1.3-1.4\mathrm{keV}$;							

Case 3: in the whole spectral coverage, including Gaussian lines associated with r,i,f lines (Table 3);

Case 4: only RGS, without Gaussian lines;

Case 5: only RGS, with Gaussian lines associated with r,i,f lines (Table 3);

Abundance table: aspl: Asplund M, Grevesse N., Sauval A.J. & Scott P., 2009, ARAA, 47, 481;

Swift obs. of novae

~100 observed, 60% detected, a few lightcurves

Reviews:

Ness et al. (2007), Schwarz et al. (2011), Osborne (2015)

The pattern of X-ray emission in novae observed by Swift, ordered top to bottom by high to low optical emission line FWHM. Observations are shown by stars, intervals are colour coded by X-ray spectral state: blue = undetected; green = hard; yellow = intermediate; orange = most likely soft; red = soft. (From Schwarz et al., 2011).