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Machine learning search for variable stars
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ABSTRACT

Photometric variability detection is often considered d&yjpothesis testing problem: an ob-
ject is variable if the null-hypothesis that its brightnéssonstant can be ruled out given the
measurements and their uncertainties. Uncorrected sgtiteenrors limit the practical appli-
cability of this approach to high-amplitude variabilitycawell-behaving data sets. Searching
for a new variability detection technique that would be #&addle to a wide range of variability
types while being robust to outliers and underestimatedsoreanent uncertainties, we pro-
pose to consider variability detection as a classificati@biem that can be approached with
machine learning. We compare several classification algus: Logistic RegressionR),
Support Vector MachinesSy M), k Nearest NeighborskN) Neural Nets KIN), Random
Forests RF) and Stochastic Gradient Boosting classifieGB applied to 18 features (vari-
ability indices) quantifying scatter and/or correlaticetieen points in a light curve. We use a
subset of OGLE-II Large Magellanic Cloud (LMC) photometB@g65 light curves) that was
searched for variability using traditional methods (168wn variable objects identified) as
the training set and then apply thiN to a new test set of 31798 OGLE-II LMC light curves.
Among 205 candidates selected in the test set, 178 are néalbles, 13 low-amplitude vari-
ables are new discoveries. We find that the considered matddanning classifiers are more
efficient (they find more variables and less false candijlates\pared to traditional tech-
nigues that consider individual variability indices oritHear combination. Th&IN, SGB
SV MandRF show a higher efficiency comparedit& andkNN.

Key words: methods: data analysis, methods:statistical, starsabias: general

1 INTRODUCTION low-amplitude variability one needs to construct and aralgb-
ject’s light curve containing multiple measurements inesrtb ef-
fectively average-out individual measurement errors. midtiple
measurements may be performed using DIA, point spread func-
tion (PSF) fitting, or aperture photometry. The effect of sider-
ing multiple measurements altogether instead of pair-veisius-
trated by the large number of high-amplitudeScuti/SX Phoeni-
cis stars (HADS) found using digitized photographic plabss
Kolesnikova et al.| (2010). These plates were earlier sedrcor
variability by comparing pairs of images, but this seardkeéato
identify the majority of HADS variables despite having a qara-
ble accuracy of individual measurements.

A variety of astrophysical phenomena manifest themselviéls w
optical variability. The incomplete list includes accaoetj ejection,
explosions, gravitational lensing, stellar magnetic\atgti pulsa-
tions and eclipses. Historically, variable objects werestiyaden-
tified by comparing their brightness recorded at a pair ofgesa
(Hoffmeister, Richter & Wenzel 1990). The photographic ges
were compared with a blink-comparator or by placing a pessiti
image of a photographic plate taken at one epoch on top of the
negative plate taken at a different epoch. Difference inzagdysis
(DIA; Alard & Lupton 11998,/ Bramich et al. 20116) can be thought
of as a modern software implementation of this idea. The- pair
wise image comparison has the obvious drawback that it can de Detection of variability in a light curve may be considered a
tect only high-amplitude variability: the object’s brigietss differ- hypothesis testing problem (Eyer 2005, Huber, Everett & elbw
ence between the two images should be a few times larger than2006, Lde Diega_2010. Piquard e al._2001): an object is vari-

measurement errors associated with individual images.efect  able if the null-hypothesis that its brightness is constzant be
ruled out. Uncorrected systematic errors and corruptedsorea
ments limit the practical applicability of this approach well-

* E-mail: in4pashchenko@gmail.com behaving data sets. Tests that take into account not onlgndae
T kirx@kirx.net surements themselves, but also the order (Tamuz, Mazeh & Nor
1 pgavras@noa.gr 2006, | Figuera Jaimes et al. 2013, Ferreira Lopes & Cross|)2016
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and times|(Stetson 1996, Zhang et al. 2003) at which the m=asu
ments were taken were also proposed. The variability detect
threshold for these tests often has to be determined eralbjrfor

a given data set. Sokolovsky et al. (2017) investigated 24idibil-

ity indices” (also referred to as “light curve features”)tatsstical
characteristics quantifying scatter and correlation leetwpoints
in a light curve. The ability of these indices used indiviipar

in a linear combination to discriminate variable objectsrirnon-
variable ones was compared using multiple real and sinditida
sets.

In this paper we explore a new variable star selection tech-
nigue that outperforms all the individual (or linearly coiméxd) in-
dices considered hy Sokolovsky et al. (2017). This is acudwy
finding useful non-linear combinations of these indices. dbe-
sider variability detection not as a hypothesis testindlam, but
as a hinary classification problem (variable vs. non-véeiaib-
jects) and apply machine learning techniques to solve i. dio-
posed technique does not depend critically on accurat®pteitic
error estimates and is not sensitive to individual outliexasure-
mentd. It can be applied tany large set of light curves given a
representative subset of these light curves has been nhaolza-
sified as variable and non-variable ones. This subset istodegin
a machine learning (ML) classifier that will process the méghe
data.

While preparing this paper we learned that the General Vari-
ability Detection module of the Gaia Variability Analysigppline
(Ever et al! 2017) is using a Random Forest classifier traored
multiple variability indices computed for variables idified in
the OGLE-IV Gaia south ecliptic pole field by Soszyhski et al
(2012). Earlier, _Shin, Sekora & Byun_(2009), Shin et al. (201
proposed to use multiple variability indices together caniny
them with an infinite Gaussian mixture model. The method of
Pawlak et al.|(2016), while focusing solely on eclipsingarias,
is similar in spirit to the method proposed here. The autluses
a set of features computed by the BLS period-finding algorith
(Kovacs, Zucker & Mazeh 2002) as an input for the Random For-
est classifier trained on OGLE-III eclipsing binaries (Gndcet al.
2011) in one of the OGLE-IV (Udalski, Szymanski & Szymaihsk
2015) fieldsl_Elorrieta et al. (2016) used machine learniniglén-
tify RRab stars in the VVV survey data (Minniti et'al. 2010).
Pérez-Ortiz et al. (2017) propose a set of light curve fesstuo-
bust to individual outlier measurements and use them to eoenp
multiple machine learning algorithms on classified OGLHight
curves. Taking into account the experience of authorsdiatove,
we suggest the following points that we try to justify in tkierk:

e Machine learning can be used for variability detectiogen-
eral, not only for extracting variable objects of specific typesse
type at a time.

1 We use light curve features (MAD, IQR/f&; Tabld2) that are by design
not sensitive to outliers (Sokolovsky eflal. 2017) and dodegend on the
estimated photometric errors. While this is not the caseftber features
(o, szed,...) these features will end up having less predictive poveen-
pared to the robust features if the sensitivity to outliershe incorrectly
estimated errors constitute a problem in the given dataMietechniques
described in Sectidn 3.2 include procedures (bagging,alitp@ppropriate
choice of loss function) designed to minimize dependenandidual ob-
jects with outlier lightcurve feature values (that may tefnom corrupted
photometry). The OGLE-Il and@ F1 data we use for tests are plagued with
outlier measurements which do not end up having a criticalaich on our
ability to identify variable objects (Sectiohs #.1 and 4.3)

e This general variability detection problem is tractable fo
many different supervised learning algorithms.

e Systematic search for optimal hyperparameters of a legrnin
algorithm is needed to achieve its best performance.

e Variability search with machine learning is effective eveth
modest training sample size containing hundreds of knowin va
ables. The sample may be highly imbalanced (few variables an
many constant stars).

The paper is structured as follows: Secfibn 2 describestielata,
Section[B describes the proposed variable object seletdicim
nique and Sectiof]4 discusses the results of its applicatidhe
test data while Sectidd 5 summarizes our findings.

2 INPUT DATA

The primary input for variability search is a set of timeissr
brightness measurements collected for a number of sour@es —
set of light curves. The light curves may be quite diverseneve
within one data set. They may have different number of mea-
surements as not all sources are detected and successkdly m
sured in each image. Measurements of different sources may b
influenced to a different extent by systematic effects that d
pend on source color or its position on an image. Some measure
ments get corrupted by random events such as cosmic ray hits
or object’s image falling on a bad pixel. Light curves of vari
able sources may show a variety of patterns depending on the
variability type and period (or typical timescale for noerjpdic
variables). To characterize such diverse light curves inna u
form way we extract a set of light curve features (or “variabi
ity indices”). We use XST code [(Sokolovsky & Lebedev 2017)
to extract the features while other feature extraction sode
also publicly available (Nun et al. 2015, Kim & Bailer-JOIg&l6,
Christ, Kempa-Liehr & Feindt 2016). The features computgd b
VAST are meant to be used for variabildgtectionwhile the other
codes are mainly concerned with features usefukfassification

of detected variables, but there is a great deal of overlapdsmn

the features useful for these two tasks. In Sedfich 2.1 werithes

the photometric data set used for our tests and discusshitsant
biases in Sectioh 2.2. In Sectibn.3 we present the utikkeadf
light curve features.

2.1 Lightcurves

As input data we use a small subset of publicly available €pti
Gravitational Lensing Experiment phase two (OGLE-II) P Sty
I-band photometry of the field LMGC20 towards the Large Mag-
ellanic Cloud (LMC; Szymanski 2005). OGLE-Il observatiare
conducted with the 1.3 m Warsaw telescope at the Las Campanas
Observatory, Chilel (Udalski, Kubiak & Szymanski 1997). Rub
OGLE-II photometry was used earlier to test new variabitig
tection techniques by Shin & Byun (2007). OGLE-Il LMC data
were searched for various specific types of variable objactad-

ing microlensing events (Wyrzykowski et/al. 2009), varet#d gi-
ants (Soszynski et al. 2004, Kiss & Bedding 2003, Soszyrtski e
2005%), RR Lyrae stars (Soszynski etlal. 2003), eclipsinguis
(Wyrzykowski et all 2003), cataclysmic variables (Cieskinet al.
2003), quasars| (Eyer 2002), Cepheids_(Udalskilet al. 11999).
Zebrun et al.|(2001) constructed a comprehensive catal@gmof
didate variables (of all types) detected with DIA. The fieldsv
also covered by later phases of the OGLE project (UdalsKi et a
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2008, | Udalski, Szymanski & Szymafski 2015) as well as othe
time-domain surveys including VMC_(Cioni etlal. 2011), EROS
(Tisserand et al. 2007), MACHQO (Alcock et al. 2000, Beckeailet
2005). Overall, the test field is well-studied for variatyili

The LMC_SC20 data set was manually searched for variable
objects by Sokolovsky et al. (2017). The authors identifi@ch@w
variable stars hinting that variability detectable in OGLLHata is
still not fully explored. These findings also highlight tteef that in
practice, one cannot expect to have a complete sample ablesi
stars by just searching catalogs of known variables, evesudh
well-studied sky region as the LMC.

The use of the LMCSC20 data set allows us to directly com-
pare the effectiveness of the variability detection teghai pro-
posed here to the techniques discussed by Sokolovsky @0DAI7).
Specifically, we want to compare the results obtained witbhimee
learning to the results of variability search by visual iesjion of
light curves, which is the most reliable, but labor-intemsivay
of identifying variable objects (hence the relatively shsite of
our training sample). The sample consists of 30265 sourd#s w
high-quality (percentage of good measurements Pgod88; see
Section 4.1 in_Szymanski 2005) light curves each having 262 t

3

Table 1. Types of variable objects in the blind test (LM&C19) and train-
ing (LMC_SC20) data sets.

Type LMC.SC19 LMCSC20

eclipsing binaries 36 54
variable red giants (L/M/SR/ELL) 54 52
RR Lyrae-type variables 56 26
Cepheids (classical and Type Il) 17 20
blue irregular variables (GCAS/BE/QSO) 22 13
J Scuti stars 1 3
total 186 168

we also performed a similar analysis of two other data setssin
tigated byl Sokolovsky et all (2017) that were collected vdth
ferent telescopes and processed using different sourcactgn

and photometry softwareKr (Lapukhin, Veselkov & Zubareva
2013,12016) andr' F1 (Burdanov et al. 2016, Popov ef al. 2015,
Burdanov, Krushinsky & Popov 2014). The results obtainethwi
Kr andTF1 are consistent with the ones presented in Secfibns 4

268 points; among them 168 variable sources of various types and®. The main focus in our investigation was set on the OGLE-

This data set is further randomly split into subsets mutifiines
in order to find the most promising variable object selectaxh-
nigque as described in Sectigh 3. The full LM&EC20 data set from
Sokolovsky et al.| (2017) is used to train the selected bassiler
before applying it to a new data set that was not previouslycbed
for variability by us. The new data set consists of 31798 OGLE
Il PSFI-band light curves from the adjacent field LM&C19 se-
lected by applying the same quality cut (Pgop®8 resulting in
262-268 light curve points). Three variable objects (angl i&8n-
variable ones) located in the overlapping sky region prigsetn in
LMC_SC19 and LMCSC20 data sets.

Table[1 presents the distribution of variability types &vai
able in the training (LMCSC20) data set and recovered from
the blind test data set (LMGC19, Section_4]13). We adopted
a published classification of variable objects whenevesiptes
eclipsing binaries from_Wyrzykowski etlal. (2003), Gracatial.
(2011), Kim et al.|(2014), red giant variables from Soszyeslal.
(2005),| Fraser, Hawley & Cobk (2008), Soszyhski etlal. )0
Spano et al. [(2011), RR Lyrae variables from_Soszynskilet al.
(2003), Cepheids from_Udalski et'al. (1999), candidate Besst
from [Sabogal et al.| (2005), QSO candidates from Eyer (2002),
Kimetal. (2012),| Koztowski et al.| (2013)9 Scuti stars from
Poleski et al.[(2010). Soszynski et al. (2004) classified61dri-
odic red giants in the LMC as candidate ellipsoidal variakfts-
lowing the suggestion hy Wood et al. (1999), Wood (2000) dimat
of the five period-luminosity sequences observed in LMC red g

ants may represent binary systems rather than a mode of-pulsa

tions. Considering tha} physical interpretation of this sequence as
binary systems is not unambiguoui$;in practice, the light curve
shapes of these objects are indistinguishable from lightesuof
some semiregular variablegi) eclipsing variables with periods
> 10d showing strong ellipsoidal variations often have blcer
ors than the candidate ellipsoidal variables with no eep$or the
purpose of this work we group the candidate ellipsoidalalads
with other variable red giants in Tallé 1. The lists of catelige
stars of_Sabogal etlal. (2005) and QSO candidates of Eyef}200

have 99 common objects 11 of which are among the variable ob-

jects in our data sets. In Talilé 1 we combine them under tred lab
“blue irregular variables”.
While the discussion below is based on the OGLE-Il data,
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LMC_SC20 data set as many other OGLE-II light curves are readily
available for variability search with the technique desed here.

2.2 Sources of bias in the training sample

The training sample may be biased as the list of known vaegaibl
the LMC_SC20 data set may not be exhaustive (and therefore some
variable objects may be incorrectly labeled as non-vagjative
try to minimize this by conducting our own variability sear@sed
also in our previous work, Sokolovsky etlal. 2017) based soali
inspection of light curves instead of relying on publishetsl| of
variables (Se¢.211), however this is still likely an appnoation to
the complete list of (detectable) variables in the used &églot
curves.

Another source of bias is the limited size of our training sam
ple (Table[1) that does not nearly represent all variabtjfyes
and all possible variations in amplitude and period or \mlits
time scale within each type. This translates in a non-triviay
to an incomplete coverage of the variability features ¢idticed
in Sec[Z.B) parameter space occupied by variable objemtstite
discussion of learning curves in S€c. 412.1). The sevefitthis
problem is hard to quantify a priori. Positive results ofighil-
ity search in the unseen data described in §ed. 4.3 indibate t
this is not a critical issue. This may partly be attributedtte fact
that (while relying on the assumption that variable objecésrare)
the section of the variability features parameter spaceped by
non-variable objects should be sampled well wittl30000 exam-
ple non-variable sources in the training set.

2.3 \Variability features

We initially considered 24 features listed in Table 2 (a tiedadis-

cussion of these features is presented by Sokolovskye®al)2
Many of them are highly correlated (see Figli#, i) fact some
represent the same quantity computed using different wiagh

2 biokit Python package was used to the

https://github.com/biokit/biokit
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Figure 1. Correlation between the light curve features. Color andrétion of each ellipse represent the sign (red and roedkgrees clockwise from

vertical - positive while blue and rotated countercloclevisnegative) and eccentricity with color depth code theevaifithe Pearson correlation coefficient
between the corresponding features (see the color bar)adynercular shape and white color indicate close to zemvetation between a pair of features
while a narrow red (blue) ellipse indicates high positivegative) correlation between features.
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kurtosis

-1

or clipping schemesa(-0gjp, Stetson'K-kurtosis,d-Jime-Jelip, L- turesCSSDand|; that in the implementation 6f Sokolovsky et al.
Liime-Lciip; see SectionA). We dropped the featugggy, L, Leiip, dﬁ?) appeared to be less-informative for variabilityrehaWe
Jelips MAD, Liime which are highly correlated to other correspond- tried to log-transform positive features (suchaer IQR) to make
ing features withr > 0.995 (Figurdll). The choice which feature their distribution closer to the normal but it has not resailin
to keep among a few highly correlated ones was done in a quasi-higher performance for any of the tested algorithms. Ensetrdes

random fashion. When processing a really large set of lightes, methods used in our work, Random Fore&B;(Sectior 3.24) and
it would be wise to consider computational costs of feataed Stochastic Gradient BoostingGB Section[3.25), are invariant
keep the one that requires less time to calculate. We cheblked to one-to-one transformations of the input feature data. jfbe-
the number of remaining features is reasonable u§irigcipal processing procedure includes scaling features by cegtemd

Component Analysi®CA; Pearson 1901). Most (95%) of the vari-  standardization for all methods excdpF andSGB We note that
ance in features can be explained by 10 PCA-components (Fig-to prevent overestimation of classification performanbe, data
ure[2). This suggests that at least 10 original featuresedet to pre-processing and the feature selection should be donevaya
describe most of the variance in the data. We also droppeidhe that prevents any information leakage from the sample used t
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Figure 2. Fractional variance explained by each of the PCA-component
Also known asscree plot(Cattell| 1966). Most of the variance can be ex-
plained by 10 PCA components confirming that many light cdeatures
listed in TabléR are correlated (see also Figure 1 and $44iR).

Table 2. Light curve features (variability indices). Features etated with
other features withr > 0.995 for the LMCSC20 data set (and excluded
from the final analysis) are marked with italic

Index Reference

weighted standard deviation- Kolesnikova et al. (2008)
clippedo —agjip  Sectior Al
median abs. deviatior MAD Zhang et al. (2016)
interquartile range — IQR_Sokolovsky et al. (2017)
reducedy? statistic —x2,, de Diego (2010)
robust median statistic - RoMS__Rose & Hintz (2007)
norm. excess varianceaéys Nandra et al. (1997)
norm. peak-to-peak amp.v Sokolovsky et al. (2009)
autocorrelation—1; Kim et al. (2011)
inv. von Neumann ratio —/7 Shin, Sekora & Byun (2009)
Welch-Stetson index kys Welch & Stetson (1993)
flux-independent index ¥ Ferreira Lopes et al. (2015)
Stetson’s) index Stetson (1996)
time-weighted Stetsond;me Fruth et al. (2012)
clipped Stetson'sg}, Sectior A2
Stetson’s Lindex Stetson (1996)
time-weighted Stetson’sjke Fruth et al. (2012)
clipped Stetson’sdy, Sectior A2
consec. same-sign dev. — CSSEhin, Sekora & Byun (2009)
Sg statistic _Figuera Jaimes et al. (2013)
excursions -Ex Parks et al. (2014)
excess Abbe value £, Mowlavi (2014)
Stetson’K index Stetson (1996)
kurtosis _Friedrich, Koenig & Wicenec (1997)
skewness _Friedrich, Koenig & Wicenec (1997)

evaluate performance to the one used to build the classigr (
Smialowski, Frishman & Kramer 2010).

3 VARIABLE STARS IDENTIFICATION AS
CLASSIFICATION PROBLEM

We tackle the problem of variable stars identifications as-cl
sification problem. Classification is supervisedlearning prob-
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lem where one has a set of objects a set of response¥
and some unknown dependente X — Y (target function e.g.
Hastie, Tibshirani & Friedman 2001, Vorontsov 2013). Theksr
lem is to find (earn) an algorithm (decision function* that ap-
proximates target functiof for all X given only the subsample of
all objects -Xrain, With known response¥yain,i (called thetrain-

ing samplé¢. Depending on the nature ¥%f the problem can be for-
mulated as regressiol & R), binary {f = {0,1}) or K-class clas-
sification Y = {0,1,...,K}). The objects are characterized by a set
of featuresg; : X — Dj, whereD; could be{0, 1} (binary feature),
IDj| < e (nominal or ordinal feature if finit®; could be ordered)
or Dj =R (qualitative feature). The choice of features that capture
properties related to object’s class is crucial for goodsifecation.
The chosen set of features determines the maximum clasisifica
performance that could be achieved for a given protiem.

When building a classifief* that provides high quality pre-
dictions on new unclassified data and given a set of feattinas (
constrains the maximum achievable quality of classificgtiane
has to decide what family of algorithmis*(6), parametrized by
some parameter vectd, to use. The main concern is that if the
chosen algorithm is not flexible enough to approximébtthen it
cannot approach the highest possible performance of fitz&in
on new data no matter how large training sample is used ta lear
the parameter§. In this case, the algorithm prediction has high
bias and it is said that the algorithmuaderfitting If the algorithm
is too complex {* has many unconstrained paramet@jst can
spend some of its degrees of freedom on learning noisy patter
specific to a given finite training sample. Thus algorithmige-p
dictions on new data become unstable, sensitive to smatigesa
in training data. In that case, the predictions have highatison
and it is said that the algorithm wverfittindl. In both cases the
algorithm’s ability to generalize (that is to provide goodatjty
classification of new data) becomes low. This trade-off gosd
by the algorithm’s complexity is called tHgas-Variance trade-off
(Hastie, Tibshirani & Friedman 2001).

One can constrain the complexity 6f or tune some other
high-level algorithm property (e.g. algorithm behavioridg train-
ing) to reduce the dependence of its predictions on the updd fi
training sample (i.e. algorithm disperdﬂ)nTo see how much the
algorithm is overfitting one has to apply it to some classifiath
that are not part of the training sample. Parameters thatrete
the algorithm performance on new data but cannot be learsiad u
training data alone are calléyperparameter¢HP).

In summary, each algorithm has a set of conventional param-
eters@ (e.g. coefficients of features in regression, Sedfion 3.2.2
weights of neurons ilNN, Section[3.2)6) that are learned from
the training sample and hyperparameters that have to beeset b
fore training (e.g. number of trees RF, Sec[3.24 or number of

3 Classifier with such performance is calledayes classifier
(Hastie, Tibshirani & Friedman 2001) and its (maximum achixe)
error rate is calledayesian ratelt should be noted that it is quite theoreti-
cal construction because it uses generally unknown postembability of
class membership(Y|X) for making its predictions.

4 Overfitting could also be the result of training sample baingepresen-
tative of the parent population, e.g. when training datassmall or has
wrongly classified objects. In general, any algorithm theg high perfor-
mance on data used to train it but lower performance on neavidagaid to
overfit.

5 High-bias algorithms could also have significant dispersag. multi-
variate linear regression with highly correlated indemamdariables (fea-
tures).
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hidden layers or number of neurons in each hidden lay&thh
Sectio3.26). The hyperparameters include not only thepbex-
ity parameters (capacity to learn, e.g. depth of a decisem hum-
ber of hidden layers and neurons in each layer in neural mkfwo
number of basis learners in ensemble, value of regulanizatiat
penalizes too complex models), but also parameters thatdime
process of algorithm training, e.g. speed of learning (dzring
rate in gradient descent methods of learning neural nesyolihe
optimal set of hyperparameters for a given algorithm largid-
pends on the data set and might differ even between traiimg s
ples of different sizes.

3.1 Performance metric

To decide which variability detection technique works begt
need to define what exactly do we mean by “best”, in other werds
adopt an appropriate performance metric. As we deal witlglal¥i
imbalanced data set (non-variable stars outnumber variaiés
by a factor of~ 100, Sectiofi Z]1)accuracydefined as the ratio of
correct predictions to the total number of cases evaluateshite
being most intuitive performance metric is not a proper raezasf
classification algorithm performance. A high accuracy samuld
be obtained by just labeling all target objects with the mbjalass
(Kononenko & Bratka 1991, Valverde-Albacete & Pelaez-Bbtop
2014). To avoid this, one considdpsecision P = TP/(TP+ FP)
andRecall R= TP/(TP+ FN), as well as their harmonic mean
known asF;-score

F1=2PR/(P+R),

where TP is the number of true positives (i.e. true variablassi-
fied as variables), FP is the number of false positives (raoiables
classified as variables) and FN is the number of false nezmtivue
variables classified as non-variables; Rijsbergen|1974).

Suppose we test a classifier using it to select candidate vari
ables from a set of light curves for which we already know thbtr
answer - which light curve shows variability and which does. n
ThenP is the probability that a randomly chosen object from the
list of candidates is a true variable whiRes the probability that a
randomly chosen true variable is in the list of candidateseélity
there is a trade-off between high valueRdindP, i.e. recovery of
all positive objects (true variables) and contaminatiofetbse posi-
tives (objects that algorithm wrongly classifies as vagapF; is a
useful compromise: it has a high value when bR#ndP are high,
that is when the classifier does not miss many true varisdoes
the majority of objects classified as variables are actughlvkes.

Most classification algorithms instead of class labels.(e.g
variable/non-variable) return probabilitigs of i-th object repre-
senting a certain cld§sTo assign class membership to objects be-
ing classified one has to choose a threshold vaiggsholg Such
that objects with probability; of belonging to the clasg are as-
signed to that class i > Pihreshold P, R and Fy do depend on
the adopted threshold value. This can be utilized if the abflse
positives and false negatives is different. For examplehién vi-
sually inspecting a list of candidate variables we are mgltio look
at ten false candidates for every true variable, then fonesost of
false positives is ten times lower than the cost of false tivem If
the cost of false positives is high (e.g. if we want to obtalistof

6 Actually they return some proxy of probability. To make ibpability one
has tocalibrate (Zadrozny & Elkain 2002) classifier by comparing predicted
and true frequency of classes for some independent data set.

candidates with the majority of the objects representing trari-
ability) thenP is a suitable performance metric, if the cost of false
negatives is high (e.g. if we want to recover as many trueatstes

as possible) thaR can be used. Alternatively, one may use

Fg = (1+B%)RP/(R+BP),

a score that attache8 times as much importance t as P
(Rijsbergen 1974). In case of equal cdstsvorks best.

To characterize the model’s performance over all possible
thresholds (i.e. under different values of FP/FN cost gtidrea
UnderROC Curve QAUC; [Fawcett 2006) may be used as a perfor-
mance metric. ROC-curve is a plot Bfagainstalse Positive Rate
FPR= FP/(FP+TN), where TN is the number of true negatives
(true non-variable stars correctly classified as non-teées). For
binary classificatioAUC is the probability that given one positive
and one negative example at random, the classifier rank gitveo
example above the negative one.

As shown by _Saito & Rehmsmelier (2015) in case of highly
imbalanced dataAUC weakly depends on the algorithm per-
formance (mainly because it considers the number of TN) and
other metrics (such as Area Under Precision-Recall Curve -
AUPRQ should be used instead. To compare methods in similar
tolSokolovsky et all (2017) manner we decided to search pgper
rameters that maximizE;-score using the default threshold value
of 0.5.

3.2 Classifiers

We tried several classifiers: Logistic RegressioR)( Support Vec-
tor Machines with Radial Basis Functior®(M), k Nearest Neigh-
bors KNN), Neural NetsIN), Random ForestdRF) and Stochas-
tic Gradient Boosting classifieBGB. These algorithms use differ-
ent assumptions about classes and target function and fteseioli
heuristics and methods to tackle the problem of classifinatiVe
usescikit-learn Python package (Pedregosa et al. 2011) imple-
mentation ofSVM RF, kNN, XGBoost] (Chen & Guestri 2016)
implementation oSGBandKeradd library for NN—classification.
In the following we briefly describe these classifiers andrthg-
perparameters. More information may be found in the offida-
umentation okcikit-learn XGBoostandKeras

3.2.1 k Nearest Neighbors (kNN)

kNN method is based on the hypothesis that similar objects usu-
ally share the same class. The notion of “similarity” is dedirin
terms of distance between objects in feature space. Thetalgess
predicted bykNN is the class chosen by the majority lotlosest
neighbors. Despite being quite simple (no need to fit modidarn
anything) this method is very effective especially in sitoawhere
the hypothesis holds and number of samples is relatively. fiige
algorithm is nonparametric i.e. it's decision surface (mbary be-
tween classes in features space) can be arbitrary compteamn
proximate any underlying dependent€Sectior B) given enough
training data. The optimized hyperparameters are numhegigh-
borsk andweights- the type of weighting being used. We tried

7 https://xgboost.readthedocs.io/en/latest/
8 https://keras.io/
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uniform weights and weights inversely proportional to élezn
distance to neighb@r

3.2.2 Logistic Regression (LR)

LR is a generalized regression model used in cases of binary (or

categorical, in general) response variable. It differsnfithie stan-
dard linear regression with continuous response by the ubeko
functionthat transforms linear combinations of features to binary
response variabl&R models the logitp) = log(p/(1— p)) of pos-
terior class probability membershipas a linear combination of
features. Setting some threshold valug@fllows one to make the
response binary. We optimized two hyperparametethat defines
the level of regularization used (defauR-regularization was used
which penalizes complexity by adding term to objective tiorc
being minimized that consists of sum of squares of featuedfico
cients) and relative weights of classes.

3.2.3 Support Vector Machine (SV M)

Linear SV M is searching for theptimal separating hyperplane
in the features space that separates classes best in temmexef
imum distance from closest objects of both classes to therhyp
plane [(Vapnik 1996) thus maximizing timearginbetween classes.
This hyperplane is defined by a (usually) small number of abje
in feature space that are close to decision surfagpfort vectors
and that are the hardest to classify. For classificationlpnod with
classes that can’t be separated using linear surface tlof sigecial
kernels reduces the problem to finding the optimal sepaydtyn
perplane in enlarged (even infinite-dimensional for somméis)
transformed feature space without explicitly transforgrieatures
(Boser, Guyon & Vapnik 1992). We optimized: kernel type elin
(linear), polynomial (poly) and Radial Basis Function kerneb(),
degree of polynomial kernel for kernpbly, C - "soft margin” reg-
ularization penalty parameter (it determines the relatifleience
of wrongly classified points - points on the "wrong” side okth
optimal hyperplane)gamma- kernel coefficient and the relative
weights of classes.

3.2.4 Random Forest (RF)

Jtim <= 0.5173
30265
[30097, 168]

TrV \{ilse

kurt <= -0.6465 inv_eta <= 0.7674
30133 3
[30057, 76] [40, 92]
J <=0.6617 K <= 0.7485 Ex <= 1.3136
30111 49 83
[30054, 57] [29, 20] [11, 72]
29727 384 30 19 32 51
[29693, 34]| |[361, 23] [22, 8] [7, 12] [10, 22] [1, 50]
constant constant constant variable variable variable

Figure 3. An example decision tree for LMGC20 data set. Nodes of the
tree show the cuts on variability feature (Table 2) valuesdu® make a
decision at each node. The numbers in each node are the nahbkr
objects considered in this node, the number of non-variaht variable
objects.

[B:3 for details of measuring;). RF also uses the idea odndom

subspace selectiofHa |1998) (also known as attribute or feature
bagging) that is similar to bagging but instead of subsamyhiain-
ing objects it consists of using random subsets of featunesré-
ating and growing individual decision trees. This prevéfsfrom
being focused on small number of highly informative feasureat
could loose their predictive power on unseen data.

The optimized hyperparameters aneestimators- the num-
ber of decision trees to use in the ensembiex features-
the number of features to use in search of best split of the
node, maxdepth - the maximum depth of the individual trees,
min.samplessplit - the minimum number of samples in the node
of the decision tree required to make spiitin sampledeaf - the
minimum number of samples required to be in the leaf (thagris t
minal) node of each tree and relative weights of classes.

3.2.5 Stochastic Gradient Boosting (SGB)

The idea oboosting(Schapire 1990) is to incrementally built clas-
sifier by re-weighting training examples giving more weighthe
misclassified objects. Boosting combines weak learnefs kiih
bias (which are underfitting, i.e. not flexible/complex eglouo

RF is an ensemble method. Ensemlble methods use the predictionsapproximate underlying relation themselves) sequenpt{ghallow
of several weak learn@f$and combines them at once or sequen- decision trees in our work) reducing bias of the final estonagra-

tially to make more efficient predictions than individuahteers.

RF uses théagging(bootstrap aggregation Briemian 1996) method
that combines many weak learners with high variance (whieh a
overfitting, e.g. too flexible/complex themselves, Sed8ptrained

on bootstrap samp@of training data thus reducing variance of
the final estimator. It usually uses a deep decision tree (kith
many branches) as weak learner. An example decision tresicla
fier is presented in Figufd 3. We use a shallow tree with an-easy
to visualize structure. Hyperparameters of this tree wkse @pti-
mized for maximum performance as measured~py= 0.69 (see

9 We also experimented with some non-euclidean metrics stgapdn
scikit-learnPython package, e.ghebyshevmanhattardistances, but their
usage resulted in degraded performance.

10 Weak learner is an algorithm performing not much better tizamdom
guessing

11 Bootstrap sample is a sample of the same size as the origiralrawn
with replacement from it.
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dient boosting treats boosting as optimization algorithmd gen-
eralizes the boosting method to arbitrary differentiabgective
functions (Friedmah 2001, Mason etlal. 1999). To preventfive
ting, boosting can be combined with bagging and random $ubse
selection $tochastic gradient boostijdy using only a subsam-
ple of training data on each iteratian (Friedman 2002) andba s
set of features to decide which should be used for splittieg t
node or creating another tree. We optimized the followingeny
parametersiearningrate - the scale value for the prediction of
each tree (shrinkage); model complexity parametaaxde pth-
the maximum depth of the individual treemmma- the minimum
objective function reduction required to make a furthetifian on

a leaf node of the treanin_child_weigth - the minimum sum of
weights of all examples in a child of split required to make- fu
ther splits,maxdeltastep- the maximum delta step allowed for
each tree’s weight estimation to be; parameters that maleetcp
tions to be more robust to noissibsample subsample ratio of the
training instances, that is fraction of the training datadsawn at
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random without replacement at each iteratiool, samplebytree- Table 3. Variability selection algorithms and their hyperparametalues
the subsample ratio of columns (features) when constiyietath that maximize th&S for the test data set LMSC20.

tree, col_samplebylevel - subsample ratio of columns (features)
for each split, in each leve$cale posweigth- relative weights of

classes, parameter that controls the model complexityigiroeg- Algorithm - Secion Hyperparameter Value F{
uIarization:reg_!ambda- L2-regularizat?o_n term on weights. The Machine learning algorithms
parameten_estimators- number of decision trees in model - was KNN B2 n_neighbors 6 0.68
determined as iteration since which performance meastirg be weights distance
used Fq, but se¢_3]3 for details) have not improved during the fol- LR 322 C 50.78  0.68
lowing 30 iterationséarly stoppingule). classweight 2.65
SVM 323 kernel rbf 0.80
C 25.05
3.2.6 Neural Net (NN) gamma 0.017
classweight 2.93
We used a fully connected neural network topology and chiecke RF 322 n_estimators 1400 0.77
one and two hidden layers. Though we did not expect complex de maxdepth 16
cision surface geometry for our problem, we decided to trg tw max features 5
hidden layers but include regularization by means of cairsir min.samplessplit 16
on neurons weights andropoufd technique to prevent overfit- minsampleseaf 2
ting. The input and the hidden layer(s) both hadtified linear classweight 28
SGB [3.253 learning.rate 0.085 0.79

units(Nair & Hinton|2010) activation functions (Haykin 1999) and
the output layer had a sigmoid activation function for ptulistic
predictions. The neuron weights were initialized usingribemal

maxdepth 6
min_child-weigth 2.36
subsample 0.44

distribution. The weights update us8tbchastic Gradient Decent colsamplebytree 0.35
(SGD method on subsets (minibatches) of training data. We op- colsamplebylevel 0.76
timized the following hyperparameteiiynetwork architecture pa- gamma 4.16
rameters — number of hidden layers and neurons in each hidden scale posweight 4.09
layer (size of the input layer was determined by the numbégaf maxdeltastep 2
tures); ii) regularization parameters — the value of the dropout at reg-lambda 0.09
each layer (except output) and the maximum sum of weights for NN 3.2.8 num. of hidden layers 1 081
each layerjii) parameters o8GD (not specific toNN) — the ini- num. neurons in h'dden layer 13
. . . dropouton input layer 0.00
tial learning ratdr, the decay ratedecay rate of decreasing learn- dropouton hidden layer 0.17
ing rate (learning rate schedulé)pmentum parameter that deter- sum of weights, input layer 9.04
mines the "inertia” of neurons weights update w8 D, batch size sum of weights, hidden layer 5.62
- number of data points to use for calculating updates ofareur learningrate 0.20
weights;iv) classweight- relative weights of classesb_e pochs decayrate 0.001
number of epochs, that is the number of times all training dagre momentum 0.95
used for updating network weights - was determined by thky ear classweight 2.03
stopping rule. batchsize 1024
Traditional methods

. Bne selection threshold .80 0.59
3.3 Hyperarameters tuning Lb selection threshold .6o 0.53
Each algorithm’s hyperparameters (listed in Table 3) waned us- m;ci:eﬁ;l: selection threshold .4g 8'32

ing theTree of Parzen Estimators (TPB)gorithm (Bergstra et al.
2011) implemented ihyperodtd. TPE is a Bayesian approach to
optimization that models conditional probabilip(A |c), whereA

8 Jime is the variability index (Tablgl2) with the highest-score for

th | fh t | functi iteri LMC_SC20, but some short-period variables cannot be recoveitbdhis
- the values of hyperparametets; some loss function (criterion index.” L index has the highe$-score in this data set among the indices

one dgsirfes to minimize) by two Gaussian Mixture I.\/Iodels.. One iat may recover all known variablesAdmixture coefficient of the first
(1(A)) is fitted to the hyperparameters values associated with the pca component used as a composite variability index (afinea

smallest (best) values of loss function and ottggA {) is fitted to combination of individual indices, see Sokolovsky €t all 26or details).
the hyperparameter values for all other values of loss foncNew d The last line in the table presents the medtarscore of all variability
candidates are considered the ones with the lowest valgA of indices compared by Sokolovsky et al. (2017).

As noted in Sectiohl3, hyperparameters shouldn’t be learned
from training data. To prevent overfitting we used 4-f@doss-
Validation (Hastie, Tibshirani & Friedman 2001L¥) during hy-
perparameters search. Each trial with proposed B values of
hyperparameters data was split into 4 folds. The split wadema

by preserving the proportion of classes in both samplesafist

fied” split). Three of four folds were combined into trainisgmple
where the classifier with trial hyperparameters values vtasifand

one fold became the evaluation sample that was used to évahea
F1-score. This combination of folds in training/evaluati@ngples

12 pPropout is a regularization method fOIN where a randomly selected ~ Was done 4 times in such a way that each of the 4 folds was used as
fraction of neurons do not participate in weights updatetTielps to avoid evaluation sample once. To properly combine individeiascores
overfitting as shown by (Srivastava efial. 2014) of 4 splits to one value we first found TP and FP for each splity s

13 lhttp://hyperopt.github.io/hyperopt/ them and then calculafg -score using obtained values. This pro-
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Figure 4. Precision-Recall curves for 6 algorithms with 12 differeptits
of data set into folds during CV. Nearly identical perforroans apparent
for the four best algorithms.

cedure (unlike direct averaging Bf-scores of each split) is nearly
free of bias due to highly imbalanced data sets (Forman & IEcho
2010). Such vaIuElcV (cross-validation estimate &f-score) is an
estimate of the algorithm prediction performance (as meashy

F1 metric) on the independent (unseen) data set. This is theigua
that was subject to maximization usifig’E algorithm.

We did a couple of thousands iterationsT®#E on classifiers
that have many hyperparameters and several hundreds oesthe r
It takes a couple of days of computing time on a Core i5 deskiop
find the best hyperparameters for RE, SGBandNN algorithms
(the computing time was less for the other algorithms).NfRdrand
SGBwe first fixed learning rate on some default values (0.2 and
0.1) and searched for best hyperparameters. Then secaeanh
was made with the found hyperparameters fixed but now seaychi
for the best learning rate. For hyperparameters that werarge
not fitted, we tried a few other choices manually, specific&NN
with different distance metric§yN with more hidden layers than
2. We also tried_1-regularization folLR (with poor performance
that could be attributed to the features correlation).

4 RESULTS AND DISCUSSION
4.1 Algorithms performance comparison

The best values dflCV obtained for each algorithm along with cor-
responding values of tuned hyperparameters are presenfeat i
ble[3. As expected for small training data set the perforrafc
classifiers depends on the way the data are split in foldeg@Vv.
Figure[4 shows th@recision-Recalturves for each of the 6 algo-
rithms. The hyperparameters used are the best for one (cortono
all algorithms) of the CV splits, that was the result of theéxan-
dom seed used. The different curves of the same color shoefthe
fect of different CV splits on each algorithm performancéeatly
SVM RF, GBandNN performance is nearly equal.

LR showed the worst performance as indicated by its
Precision-Recall curve in Figuké 4 and the low valué=pF. Note
however, that the algorithm;-score (as measured By") is still
above the values reached by the traditional selection baséa-
dividual variability indices (Tablgl3). Low performancencae un-
derstood as th&R is a linear model that separates classes with
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a linear decision surface that could result in high bias isecaf
classes that aren’t linearly separable (e.g. when nonlifeedures
combinations predict data better).

kNN also showed lower performance compared to the other
classifiers that could result from the presence of classeosit!
(training objects surrounded by objects of different ciagbe fea-
tures space), that is especially pronounced in case ofyhigi
balanced data sets used. Moreover, large number of fegitwes
mote thecurse of dimensionalitfHughes 1968) - a phenomenon
that in high dimensional space, all vectors become remote &
given vector equally farn (Beyer etial. 1999). One has to roenti
that the classes of variable and non-variable stars areineoyno-
geneous. The class of “variables” includes objects of variypes
(ecipsing binaries, pulsating variables) changing theighiness
with different amplitudes and on various timescales. Tle<lof
“non-variables” includes non-variable objects with prdpenea-
sured brightness as well as the few objects with corrupted-me
surements that have high values of the variability indexgsdo
not pass visual inspection of their light curves. Thus, thienf-
larity hypothesis” (seE_3.2.1) may fail in this case. Fipalhclu-
sion of some noisy features could also lead to degraded rperfo
mance. We tested the latter possibility by adding an extta da
prepossessing step: selectiges; best features as measured by
ANOVA Fvalue between features and class (Guyon & Elisseeff
2003,/ Nadir, Othman & Ahmed 2014) and found bEgts= 16
but only with marginal (0.002) gain iRY.

Formally, the highesCY was obtained bjiN. The bestN
architecture consists of a fully-connected network stmectwith
one input layer with 18 neurons (that is determined by number
of features used), one hidden layer with 13 neurons (both wit
Rectified Linear Units activation functions) and outputdayvith
sigmoid activation function. No dropout and relaxed wesgtmn-
strains are preferred by the best model for the input layer.

We also compare classifiers Km andT F1 data sets described
in ISokolovsky et al.|(2017). After excluding the most coated
features (withr > 0.995) we were left with 20 and 24 features,
respectively. The performance of all considered algorittum the
first data set is nearly equat V' —0.88 forkNN, 0.90 forLR, RF
andSVM 0.91 forSGBand 0.92 foiNN) and on second data set
the relative performance is about the same as for LMC20 data
set, but with lower overall level (resulting from a largemmoer of
corrupted measurements in this data set) with the Fﬁﬁgt& 0.78
achieved by th&IN classifier.

4.2 Testing further modifications to the algorithms
4.2.1 Learning curves and feature pre-conditioning forLR

To explore the possibilities of further increasing the ailgpns per-
formance we first considerdelarning curvegRaschka 2015) — the
dependence of classifier performance (measureéikscore) on
the amount of training data used (Figlie 5). For all the aersid
classifiers excefltR, the learning curves show that thg-score on
the training data set is higher than the one obtained on trepen-
dent validation data set and the later is still increasingatimal
training sample size. This indicates that using a largénitrg set
should further increase performance of these algorithnmsth®
other handL.R shows comparable relatively lok# values on train-
ing and validation sets. These two characteristic typegarfing
curves correspond respectively to high-variance (in ose eaNN,
SV M RF, SGB NN) and high-biasl(R) algorithms (see Sectifn 3)
for the used data set.
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Figure 5. Learning curves for the LMCSC20 data set. Solid lines denote
F1-score on training sample, dot-dashed - cross-validatstimate off;-
score on unseen data. Shaded regions show uncertaintyattinsing 40
different splits of data set in training and validation sé&n@wo typical
learning curve shapes are eviddoR reveals comparable relatively lo#
values on both training and validation sets that remain teoisvith grow-
ing training sample size. This is the sign of a bias of thesifies. The learn-
ing curves of the other classifiers shéw on the training data set higher
thanF; obtained on the independent validation data set (i.e. ifixssare
overfitting) that is increasing with training sample sizeftimplies absence
of a bias).

To improve the performance &R we tried to reduce its bias
by accounting for non-linear features interactions. Fivat ex-
cluded not only the highly correlated £ 0.995, Sectiof 2]3) fea-
tures but also the features that show wpaxin the original paper
bylSokolovsky et all (2017) aﬁxs andv (Tablg2) and the features
with lowest rank (as measured by feature coefficients inasgjon)
that were lowering the maximum achievable CV estimatépf
score usingRecursive Feature Eliminatiomethod (kurtosis and

0fxs again). Then instead of raw features we used their second or-

der polynomial combinations and several first PCA-comptseh

raw features (the number was determinedl'BE-search optimiz-
ing FCY). This resulted in performanc&fV = 0.78) comparable
to that of other classifiers. We conclude thRtmay work as well as
the other considered algorithms, but requires a speciabpation

of the input data.

4.2.2 Exclude uninformative features

We tried to exclude two features (kurtosis and skewnesshtnze
the least relation to variability class (as reported ANOVA F
value between label/feature) from the input of the bestsdias,
NN, to check if the removal of these most noisy features ine®as
performance of th&IN classifier. After excluding the features, we
repeated the TPE search for optimal hyperparametes. Th#-res
ing NN has marginallyAF-Y ~ 0.005) degraded performance and
simpler architecture (11 instead of 13 neurons on hiddeer]ay
stronger regularization via dropouts and weight constjaifx-
cluding kurtosis and skewness from the input of the thirstbe
SGBclassifier also results in the slightly decreased perfooman

(AFlCV ~ 0.01). This suggests that even the least-important of the

considered features contain some minimal useful inforonathat
can be taken into account by the best classififksandSGB

Fi-scores we usedSGB method as it is pretty straightfor-
ward to get the importance of features using this algorithm
(Hastie, Tibshirani & Friedman 2001). Although we used hype
parameters tuned for 18 features after successively d@rdute
least important features, we found that with 9 featudkeshfme, |,
Magnitude IQR, 1/n, kurtosis, skewnesssgr) we can still obtain
FEV as high as 0.77 and using only kurtosis,|) results inFV
=0.62.

We also tried to use several PCA-components (Figlire 2) as
features instead of the original features listed in Tabl&l® ex-
pectation was that using several first PCA-components wereiay
duce the noise introduced by a number of (nearly) uninfokmat
features. For this test we us&¥ classifier and added the number
of used PCA-components to the list of optimized hyperpatarae
(see Tabl¢]3). We allowenhax featuresto vary from 3 to 5 and
number of PCA-components from 5 to 18. The best valugof
was 0.75 with 18 PCA-components amax features= 4. Thus
the classifier doing its best when using essentially alliest The
degraded performance could be attributed to PCA keepinglionl
ear combinations of features.

4.2.3 Ensemble combining multiple classifiers

We have tried to combine individual algorithms predictiars
ing different ensembling methods. To approximate the céses-0
ing unseen data we used different random seed when splitteng
sample on train/test splits during cross-validation eatiom of F;-
score. This results in slightly worse performance of thealgms
that used HP optimized with different CV-splits.

First we usedHard Votingof individual algorithms when the
class that obtains the majority votes of individual classis cho-
sen. We used as all algorithms with weights equal to tﬁ§iY
during HP optimization as only four with the highest perfame
(NN, SVM SGBandRF). This resulted ifFCV estimates slightly
higher than the best values for individual algorithms useebting
(with corresponding gains iRCY 0.007 and 0.004).

As the predictions of individual algorithms are uncalilecat
we tried ranking averagethe probability outputs of individual
learners. Using all classifiers resulted in degraded pedoce (-
0.018) relative to the best individual classifier. Averagmnks of
predictions of four best-performing algorithms gives tlameFlcV
(0.0006). At the same time using two of the least performaatee
gorithms in averaging brings some improvement relativehtrt
individual score (0.032).

Also we combined class and probabilistic predictions of in-
dividual algorithms using higher-lever (meta) algorithni.R us-
ing theStacking Generalizatioar stackingmethod ((Wolpelt 1992)
both alone and with originallgwer-leve) feature€d. Most im-
provement (0.007) was done with using only class predistioi
four best classifiers. This could be the result of uncaldstgtroba-
bilistic outputs of the base algorithms.

We also attribute insignificant improvements of this ensem-
bling methods to high correlation between predictions diviil-
ual algorithms (see Figufé €) (Sollich & Kragh 1996). Thibis
cause all classifiers HP were tuned to have higﬁ§é’t using the
same CV splits of the training data. Using different CV spiitir-
ing HP optimization for each of the algorithm or larger tiam
sample (that will allow calibration of the algorithms praiizstic

To test how many features are necessary to obtain high 4 We usednixtendPython package (Raschka 2016).
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Figure 6. Pearson correlation coefficient between algorithms ptiedis
estimated using CV on LMGC20 data set. This values are obtained with
one fixed split of the data sample in train/test samples us&Yi Depend-
ing on the split, the presented values are changing with s@-0.02 as
estimated using 30 different splits.

outputs) will make using the ensembling methods more éffelgt
(Ting & Witten|1999| Sigletos et &l. 2005).

4.2.4 Possible future improvements

As can be seen from the learning curves presented at Higure 5
all high performance classifiers would benefit from incregghe
amount of training data. Also, larger sample of variable® avill
allow one to calibrate classifiers and combine multiple sifess
probabilistic output using e.g. stacking (Secfion 4.2E3)ally, as
discussed in Sectidn 4.3, larger sample size will help t@gsc
overfitting due to small-sized training samples that cowdub-
representative of the general population.

A promising way to achieve larger training set size could be
the artificial enlargement of training datdaga augmentatignsee
e.g.Hoyle et al. 2015) by introducing possible variatiangriown
constant/variable stars light curves (e.g. changing liditsa am-
plitude, noise level, addition of instrumental trends @&}, etc.).
According to Sectiofi]3 another promising way for improvetmen
is engineering new features that quantify the object’s instgape
profile and position on a CCD chip, proximity to other detecte
objects, correlation of magnitude measurements with eatgra-
rameters such as seeing and airmass, periodicity in lighati@ans,
shape of the period-folded light curve, etc.

4.3 Blind test on the new data set

The actual performance on unseen data is hard to esti-
mate. As our data sample is quite small, we didn't hold
out some part of it for testing classifiers on the unseen data
(Hastie, Tibshirani & Friedm&n 2001). Performance on unska
should be slightly lower than the estimations obtained i€V

on the original data set (Tah[é 3). We estimate the effechisf t
by considering distributions diFlCV values obtained by classifiers
with best HP from Tabl€]3 for 30 different splits of LMEC20
data sample on train/evaluation splits (not including the ased

for HP tuning; Figurgl7). The obtaindef-V values are lower than
the bestFCV values presented in Tadlé 3 up to 0.05 8Mand
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Figure 7. Boxplot of FCY values obtained by classifiers with optimized
HP (see Tabld]3) for 30 different CV splits of LM8C20 data on
train/evaluation splits (not including the one used for Rittg). The box
extends from the lower to upper quartile values of the daith aline at
the median and narrowing of the box denotes confidence bamncedian.
The whiskers extend from the box to 1.5 of interquantile eatiggshow the

range of the data. Points outside of the whiskers are carsides outliers.

nearly the same fdcR (-0.01) and the same f&NN. The typical
error estimated using variance Iéfv for different splits is 0.01.

On the other hand, CV estimate of prediction performance are
pessimistic because only some portion of data is used to fieino

[(e.g. 75% in our case of 4-fold CV). This on new data set with

the size of LMCSC20 will be higher for high-variance algorithms
(all exceptLR). The value of this bias can be estimated using learn-
ing curves (Figur€ls; Hastie, Tibshirani & Friedrman 200hyet-
esting, thaBV Mthat demonstrated the highest drop of performance
on new CV splits should gain the most performance from the en-
larging training sample according to its learning curvey([E).

Finally, if LMC_SC20 is not representative to the overall vari-
able stars population, then we expect degraded perfornudictzs-
sifiers on new unseen data sampled from that populatiorogies-
fitting). See discussion in SectibnP.2. This and first itemidde
reduced with larger sample size.

We have testedlN classifier with chosen best hyperparame-
ters on unseen data set consisting of 31798 stars (field IS@C9,
Sectior2) NN was fitted on whole training data set (LM&C20)
with found best hyperparameters and its predictions weatuev
ated. We used default threshold (0.5) as this was the valee¢ us
for hyperparameters optimization. The predicted vargbiere
checked in existing catalogues (Secfion 2.1) and by visisgdc-
tion. Among the 205 candidates classified as variable siaig,
occurred to be real variables (TP), 27 were considered FP.

The true variables/false candidates division may not be per
fect, it involves the following assumptions:

¢ If a candidate variable is matched with a catalog, it is con-
sidered TP. We neglect the possibility that an object may ey
detectable variations in OGLE-II data while being detectedari-
able by another survey.

e We consider TP candidates that are not matched to the cata-
logs of know variables, but upon visual inspection are iifieict as
variable stars of a known type (Figlrk 8).

e We consider FP all candidates showing a continuous bright-
ness increase or decline if they are not matched with knowin va
ables from the catalogs (lower right panel of Figliré 10).sTiki
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done to exclude possible long term instrumental trends apdra
ent variations caused by proper motion (Eyer & Wozniak 2001
is possible that some true variables showing long-termhbmigss
changes may be misattributed to instrumental trends ardimeied

as FP.

e We consider FP candidates showing elevated scatter in their
light curves (compared to other objects of similar brigsg)ewhile
showing no detectable periodicity in these variations (FegL0).
Specifically, we consider FP objects showing non-periodin-d
ming or brightening on a timescale shorter then the typibakov-
ing cadence. Young stellar objects and flare stars may shisw th
type of behaviour. Hot/cold pixels underneath the star enagy
also produce light curves of these shapes. The inspectiomaafes
associated with individual measurements (that are notadblaito
us) is necessary to judge if the measurements of a giventabjec
reliable. We choose to exclude candidates showing thisdfpe-
haviour from the list of confirmed variables.

Among the 178 confirmed variable objects in LMBIC19, 12
have never been reported as variable before. Table 4 psetent
list of newly identified variables, their colors from_Udailgit al.
(2000) and the suggested classification according to the &CV

LMC_SCI9_12951 SRA/ELL JD,, =24511928 + 340 x E LMC_SC19_38470 GCAS
182 174
3
18.3 [ s
184
185 176
- 186 I - 117
187 1 178
188
159 179
190 180
06 04 02 0 02 04 06 08 I 200 0 200 400 600 800 1000 1200
phase ID-2450727
LMC_SC19_28995 L LMC_SC19_35475 SR 1D, =2451227.6 +36.6 x E
175 182

183
184
18.5
- 186
187
18.8

189

18.1 190
200 0200 400 600 800 1000 1200 06 -04 02 0 02 04 06 08 1
1D-2450727 phase

LMC_SC19_92867 L LMC_SC19_74964 SR ID,,, =2451175.8 +91.6 X E

schemel(Samus’ etlal. 2017). Table 4 also lists one new Vayiab
LMC_SC19184609, that was not selected as a candidate variable
by the final run of theNN classifier. This variable was identified
by us during a test run with hyperparameters of ¢ classifier
differing from the ones listed in Tablé 3 (but some other allés
were missed in this run). In order to obtain a more exhaudiste -
of variables one needs to lower the classifier’s thresholdptir

mize its hyperparameters using a different performanceionets
discussed in Sectidn_3.1). This will come at a price of insega
number of false candidates that have to be rejected dursgavi
inspection. The need to find an optimal trade-off betweerrate

of false candidates and search completeness is commonvariall
ability detection techniques. Machine learning techniqoensid-

ered here provide a more favorable ratio of true variabldalte -
detections compared to the traditional methods (Table 3).

The light curves of the new variables are presented in Fi§ure
The period search was performed using Deeming (1975) déscre
Fourier transform method implemented in the online periatesh
too[H. These newly identified variables give an idea of what kind of
variables are missed by previous variability searches iiCL(8ec-
tion[2.3): they have low amplitudes < 0.25, many are periodic
with long periods> 309.

Eleven variable sources discovered with DIA by Zebrun et al.
(2001) had no classification suggested in the literatureortter
to account for these variables in Table 1, we classify theas (T
ble[d) based on their light curves (Figlide 9) and colors nmeasu
bylUdalski et al.[(2000).

Figures[8 and9 present light curves of some of the vari-
ables correctly identified by th&IN classifier — TP. Figur€_10
illustrates light curves of objects that we believe wereomc
rectly selected by th&IN classifier as candidate variables — FP.
Eight known variables were not detected by tN&l classifier
(FN; Figure[I2), three of them are eclipsing binaries idwi
by (Wyrzykowski et all. 2003, Graczyk etlal. 2011) and the asst
RR Lyrae stars (Soszynski etlal. 2003, Soszyhskilet al.200%g-
ure[11 presents example light curves that were correcthytifited

ol T
“MW%W
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Figure 8. Light curves of the newly identified variable stars listedabld4.
These are examples of true positives (TP): candidate Vesiatentified by
theNN classifier that passed visual inspection. Light curves nbpe vari-

by the classifier as non-va_riat_)l_e (TN) while these objecte ted- ables are phase folded with the indicated light elementsnBo-periodic
evated values of some variability features and thereforglavap- variables the light curves are plotted as a function of time.

15 http://scan.sai.msu.ru/1lk/
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Table 4. New variable stars identified in the field LMEC19 using thé&N classifier with hyperparameters resulting in the tigsscore for LMCSC20.

Name Position (J2000) I-band range Type Light elements B-V V-1 Remarks
LMC_SC1912951 05:42:40.86-70:47:08.7 18.50-18.70 SRA/ELL JDmax= 24511928+ 34.0x E 1.047 1120 1)
LMC_SC1938470 05:42:41.16-70:18:07.2  17.55-17.80 GCAS 0.039 Q040
LMC_SC1928995 05:42:42.43-70:28:34.8  17.70-17.90 SR JDmax= 24516237+ 70.2x E 1.364 1500 )
LMC_SC1918475 05:42:54.55-70:23:19.7 18.50-18.60 SR JDmax= 24512276+ 36.6 x E 1120 1297
LMC_SC1992867 05:43:13.34-70:15:23.2  17.80-18.00 L 1.203 1285 3)
LMC_SC1974964 05:43:17.78-70:36:02.7 17.95-18.10 SR JDmax=24511758+91.6 x E 1134 1171
LMC_SC1967152 05:43:24.27-70:44:16.3  16.45-16.65 BE: —0.007 —0.002 4)
LMC_SC1974429 05:43:37.06-70:37:03.3  17.50-17.60 SR JDmax= 24512616+ 31.9x E 1271 1364
LMC_SC1978093 05:43:41.45-70:32:19.9  17.45-17.60 GCAS 0.065 Q124

LMC_SC12184033 05:44:54.88-70:18:02.3  18.40-18.50 SR JDmax= 24509345+ 39.7 x E 0.979 1096
LMC_SC19148609 05:44:52.60-71:01:38.1  17.30-17.40 SR JDmax= 24511358+ 295 % E 1.104 1206
LMC_SC12184609 05:45:00.36-70:17:26.8  18.50-18.60 SR JDmax= 24511328+ 464 x E 0.444 1349 (5)
LMC_SC19173429 05:45:01.34-70:31:23.1  17.80-17.90 SR JDmax= 24511548+86.1 x E 0.967 1041

(1) 2’ from an X-ray source 1IWGA J0542.6047. (2) Periodic variations with changing amplitude angesimposed on a long-term declining trend. (3) The
faint outlier point in the light curve (Figufd 8) is likely heeal. (4) Irregular flares lasting 10-26uperimposed on a slow declining trend. (5) Found in one of
the test run with hyperparameter values different from thesdisted in TablE]3.

Table 5. Classification of the variable stars discovered with DIA.

Name Position (J2000) I-band range Type Light elements B-V V—I Remarks
LMC_SC1928805 05:42:47.4770:28:49.6  15.85-15.90 BE 0.125 0355 1)
LMC_SC1932187 05:42:59.0#70:26:01.0 16.10-16.15 BE 0.028 0021
LMC_SC1941313 05:43:00.5770:15:45.8  16.35-16.45 L 0.551 0912

LMC_SC19111203 05:43:53.34-70:49:07.4 16.05-16.30 GCAS 0.004
LMC_SC2021197 05:45:21.69-70:50:21.3 16.50-16.80 GCAS 0.020 Q017
LMC_SC2Q013936 05:45:22.5+70:57:24.2  16.50-16.55 SR JDmax= 24512906+ 1700 x E 1572 1464
LMC_SC2083505 05:45:49.71-70:43:18.3  16.70-16.80 SR JDmax= 24508568+ 70.3x E 0.927 1108 2

LMC_SC2Q134793 05:46:29.76-70:43:56.8  17.00-17.05 SR JDmax= 24516576+530x E 1.423 1173 3)

LMC_SC20112813 05:46:31.25-71:09:13.6  17.65-17.90 SR JDmax= 24510928+ 211x E 0.926 1175 4

LMC_SC2Q131397 05:46:54.5270:45:01.4  17.50-17.65 SR JDmax= 24512566+515x E 1.498 1172 (2,5)

LMC_SC20188685 05:47:02.33-70:40:37.2 17.30-17.55 GCAS —0.090 -0.032

(1) BOllle spectral type according ito Reid & Parker (2012).Reriodic brightness variations superimposed on a riseérgl. (3) Three faint outliers are likely
not real. (4) Periodic variations superimposed on a longr-twave. (5) Periodic variations stop around JD2450900 aagdpear around JD2451800.

pear as false candidates in a variability search based dridnel
features (rather than their ML-based combination used)hée
the light curves of FP and TN show high scatter of brightnesa-m
surements while showing no periodicity, it is most likeathhe
measurements are corrupted and do not reflect true brightaeis
ations of these objects. Additional information, first df-avisual
inspection of the images is required to identify one of fefeast
corrupting measurements of these objects.

4.4 Applicability to other photometric data sets

The suggested approach to variability detection shouldopéca-
ble to any large set of light curves given that:

(i) a subset of these light curvesaspriori classified into vari-
able and non-variable ones,

(ii) both classes include hundreds of examples or more,

(iii) the examples are representative of variability typsesd
measurement artifacts found in the studied set of lightesirv

These requirements are easily satisfied for surveys cayeain
large fraction of the sky as they include many previouslyvikno
variable stars of various types listed in the GCVS and the 8&V

© 2017 RAS, MNRASDOO, [IHI?

International Variable Star Index (Vﬂ& Watson| 2006). The
photometric data suitable for the ML-based variabilityrsbaare
collected by a number of surveys including ASAS_(Pojmanski
2002) and ASAS-SN [(Shappee et al. 2014, Kochanek et al.
2017), CRTS |[(Drake etal. 2009), DES$ (Abbott et al. 2016),
Gaia (Eyveretal.l 2017) HATNet| (Bakos et al. 2004), KELT
(Pepper etal.l 2007), MASCARA| (Talens et al. 2017), NMW
(Sokolovsky, Korotkiy & Lebedev _2014), NSVS_(Wozniak et al
2004), Pan-STARRS_(Kaiser et al. 2010, Chambers|et al.| 2016)
PTF [Law et al. 2009), SuperWASP_(Butters etlal. 2010), TrES
(Alonso et al. [ 2007), VVV [(Minnitiet al.| 2010) with even
more ambitious surveys being developed, among them LSST
(Ilvezic etal. 12008), NGTS | (Chazelas etal. 2012), PLATO
(Rauer et al._2014), TESS (Ricker etlal. 2014), ZTF (Lahetlet a
2017). The survey parameters such as photometric accuracy,
observing cadence, single or multi-color observationsnlmer of
measurements per object in a single filter and magnitudeerang
have an impact on the ability to discover various types oifatrde
objects. The suggested ML-based variability detectionraggh

16 https://www.aavso.org/vsx/
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Figure 9. Light curves of variable stars with no previous reportedsifica-
tion (Table ). Variability of these stars was discoverethvidlA. The light
curves are phased with the inidcated light elements for LMC2Q013936

and LMC.SC2Q134793 and plotted as a function of time for the remaining

stars.

is applicable regardless of the specifics of the survey'sirsg
strategy.

Space photometry surveys such as Kepler (Boruckilet al.
2010) and CoRoT| (Auvergne et al. 2009) are capable of de-

tecting brightness variations caused by magnetic actiffig-

ulae, star spost; e.d. Shapiro etal. 2016) in Sun-like stars

(Basri, Walkowicz & Reinels 2013) blurring the boundarywbetn
“variable” and “non-variable” stars. The question “is themny de-
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Figure 10. Example light curves of candidate variables rejected duwvin
sual inspection (FP).
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Figure 11. Example light curves having elevated values of individusi-v
ability indexes that wereorrectly rejectecby theNN classifier (TN).

tectable variability” may still be relevant for the faintstars ob-
served in these surveys. One may be interested in idergiftars
more variable than the Sun_(McQuillan, Aigrain & Roberts 2D1
or the ones showing periodic variability (Debosscher £2a09,
2011) —these problems require a different set of light céeatures
than the ones considered here. The variability detectigmogeh
presented here will likely not be useful for space astroseis
ogy missions like MOST (Walker et al. 2003), BRITE (Weisslet a
2014,/ Pablo et al. 2016, Popowicz etlal. 2017) and the up@min
transit photometry mission CHEOPS (Broeg et al. 2013) ag the
observe (with superior accuracy) only one or few stars aha.ti
When applying the ML-based variability detection to newedat
sets, some light curve features listed in Tdlle 2 may lose pne-
dictive power while some that are found to be the least in&ive
for the OGLE-II data set could become useful. When desigaing
variability detection procedure for a new set of photoneetiiser-
vations, it is desirable to go through the full path (Secf@rof
feature selection/filtering, choosing multiple ML-algbrns, tun-
ing their HP, checking for possible over/underfitting usiearning
curves before choosing the best algorithm and its HP vallies.
resulting classification performance will be differentrfrahe one
reported in TablE]3 and could be both better or worse depgrudin
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Figure 12. Light curves of known variables missclassified as non-tigia
by the NN (FN). While all these variables are periodic, we plot hergrth
light curves as a function of time rather than phase to hgghlsimilarities
with some FP (Fig_10) and TN (Fig.1L1). Recall that none ofutiized
variability features (TablEl2) includes information abtie period or the
phased light curve shape.

sample size, light curve quality and the exact set of featused
for classification.

5 CONCLUSIONS

We explore a novel approach to selecting variable objeots f set
of light curves. The basic idea is to treat variability déime as a
two-class classification problem (variable vs. non-vdeaibjects)
despite the intrinsic inhomogeneity of these classes aha sb
with machine learning. The procedure may be summarized as:

(i) Search a representative subset of all light curves for va

ability using traditional methods, e.g. by visually instieg light
curves of all outliers in variability feature — magnitudetgsl. It is
important to get reasonable confidence that the varialsiéiych in
the subset is exhaustive. This will be our training subset.

(i) For each light curve compute a set of features (Thbléna) t
highlight some or all types of variability while hiding unpartant
differences between the light curves (i.e. the differenddé num-
ber of measurements).

(iii) Choose a machine learning algorithm and tune its hyger
rameters on the training subset using cross-validatioressribed
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hyperparameter values may look like. One may control thaetra
off between the completeness of variability search and ate of
false detections by selecting performance metrics (ggnstead
of F1, Sectior 3.11) maximized during the optimal hyperparanseter
search.

(iv) Train the algorithm with the optimized hyperparamsten
the whole training subset.

(v) Apply the algorithm to the full set of light curves and jprext
the ones classified as variable. One may control the falgetiehs
rate at this stage by changing the classifier threshold.

This procedure works even with a highly imbalanced trairsng-
sample of a modest size: 168 variables among 30265 OGLEHH li
curves (Sectiofi 21; see also the cross-validation scorésg-
ure[8). Application to an independent set of 31798 OGLEghti
curves resulted in selection of 205 candidate variablesf 2hich
turned out to be false detections and 178 — real variableo{12
them new, TablEl4, Figufé 8).

To directly compare traditional variability search methdd
the machine learning algorithms considered here, we céstri
ourselves to the data sets used/ by Sokolovskylet al. {(2018) wh
compared effectiveness of various variability indicesifees). In
terms ofF;-score (Tabl€l3), all machine learning algorithms tested
here outperform each individual variability index as wedltheir
linear combinationNN, SVM SGBand RF algorithms show the
best performance (Figuté 4). In addition to the OGLE-II ddita
cussed in details here, these conclusions are confirmedoother
data sets from_Sokolovsky et/al. (2017) that were collectétl w
different telescopes and processed using different saxtcaction
and photometry software (Sectionl4.1). To improve the eiab-
jects selection results even further, one needs to use er laein-
ing sample and engineer additional features that wouldtéfydhe
object’'s image shape, it's proximity to other detected otsj@nd
periodicity in light variations. The suggested ML-basedalaility
detection technique should be applicable to any lagga@") set
of light curves given that a representative sub-sampleaxfetight
curves is a priori classified as “constant” or “variable” bgher
means (Sectidn 4.4).

ACKNOWLEDGMENTS

We thank the anonymous referees for helpful comments. Wiktha
Dr. Laurent Eyer for pointing out the hypothesis-testingrapch

to the problem of variability detection, Dr. Antonios Karpefas,

Dr. Nikolay Samus, Dr. Maria lda Moretti for critically read
ing this manuscript. KVS and PG are supported by the European
Space Agency (ESA) under the “Hubble Catalog of Variables”
program, contract No.4000112940. This research has magle us
of the International Variable Star Index (VSX) databasesrafed

at AAVSO, Cambridge, Massachusetts, USA. This research has
made use of the VizieR catalogue access tool, CDS, Stragbour
France. The original description of the VizieR service isganted

by |Ochsenbein, Bauer & Marcout (2000). We also relied on the
catalog matching capabilities of TOPCAT (Taylor 2005) aat} ¢
alog and image visualization with Aladin sky atlas (Bonhateal.
2000). This research has made use of NASA's Astrophysica Dat
System.

REFERENCES

in Section[3.B. TablE]l3 presents an example of how the optimal Abbott T. et al., 2016, MNRAS, 460, 1270

© 2017 RAS, MNRASDOO, [IHI?



16

Alard C., Lupton R. H., 1998, ApJ, 503, 325

Alcock C. et al., 2000, ApJ, 542, 281

Alonso R. et al., 2007, in Astronomical Society of the Padfanference
Series, Vol. 366, Transiting Extrapolar Planets Workshijonso C.,
Weldrake D., Henning T., eds., p. 13

Auvergne M. et al., 2009, A&A, 506, 411

Bakos G., Noyes R. W., Kovacs G., Stanek K. Z., Sasselov PDBmsa
I., 2004, PASP, 116, 266

Basri G., Walkowicz L. M., Reiners A., 2013, ApJ, 769, 37

Becker A. C. et al., 2005, in IAU Symposium, Vol. 225, Gratrdaal
Lensing Impact on Cosmology, Mellier Y., Meylan G., eds., }{H7/—-362

Bergstra J. S., Bardenet R., Bengio Y., Kégl B., 2011, in #&ubes in
Neural Information Processing Systems, pp. 2546—2554

Beyer K., Goldstein J., Ramakrishnan R., Shaft U., 1999, WhéNear-
est Neighbor” Meaningful?, Beeri C., Buneman P., eds. rgeri Berlin
Heidelberg, Berlin, Heidelberg, pp. 217-235

Bonnarel F. et al., 2000, A&AS, 143, 33

Borucki W. J. et al., 2010, Science, 327, 977

Boser B. E., Guyon I. M., Vapnik V. N., 1992, in Proceedingshaf Fifth
Annual Workshop on Computational Learning Theory, COLT, 'A€M,
New York, NY, USA, pp. 144-152

Bramich D. M., Horne K., Alsubai K. A., Bachelet E., Mislis [Parley
N., 2016, MNRAS, 457, 542

Brieman L., 1996, Machine Learning, 24, 2, 123

Broeg C. et al., 2013, in European Physical Journal Web of&ences,
Vol. 47, European Physical Journal Web of Conferences, @093

Burdanov A. Y. et al., 2016, MNRAS, 461, 3854

Burdanov A. Y., Krushinsky V. V., Popov A. A., 2014, Astrogigal Bul-
letin, 69, 368

Butters O. W. et al., 2010, A&A, 520, L10

Cattell R. B., 1966, Multivariate Behavioral Research, 1,245, pMID:
26828106

Chambers K. C. et al., 2016, ArXiv e-prints

Chazelas B. et al., 2012, in Proc. SPIE, Vol. 8444, Grourskthand Air-
borne Telescopes IV, p. 84440E

Chen T., Guestrin C., 2016, ArXiv:1603.02754

Christ M., Kempa-Liehr A. W., Feindt M., 2016, ArXiv:1610.017

Cieslinski D., Diaz M. P., Mennickent R. E., Pietrzyhski, @003, PASP,
115, 193

Cioni M.-R. L. et al., 2011, A&A, 527, A116

de Diego J. A., 2010, AJ, 139, 1269

Debosscher J., Blomme J., Aerts C., De Ridder J., 2011, AZA, 389

Debosscher J. et al., 2009, A&A, 506, 519

Deeming T. J., 1975, Ap&SS, 36, 137

Drake A. J. et al., 2009, ApJ, 696, 870

Elorrieta F. et al., 2016, A&A, 595, A82

Eyer L., 2002, Acta Astron., 52, 241

Eyer L., 2005, in ESA Special Publication, Vol. 576, The Tare
Dimensional Universe with Gaia, Turon C., O'Flaherty K. Berryman
M. A.C., eds., p. 513

Eyer L. et al., 2017, ArXiv:1702.03295

Eyer L., Wozniak P. R., 2001, MNRAS, 327, 601

Fawcett T., 2006, Pattern Recognition Letters, 27, 8, 8&1C Analysis
in Pattern Recognition

Ferreira Lopes C. E., Cross N. J. G., 2016, A&A, 586, A36

Ferreira Lopes C. E., Dékany I., Catelan M., Cross N. JABgeloni R.,
Leao I. C., De Medeiros J. R., 2015, A&A, 573, A100

Figuera Jaimes R., Arellano Ferro A., Bramich D. M., Girid&a, Kup-
puswamy K., 2013, A&A, 556, A20

Forman G., Scholz M., 2010, ACM SIGKDD Explorations Newslgt12,
1,49

Fraser O. J., Hawley S. L., Cook K. H., 2008, AJ, 136, 1242

Friedman J. H., 2001, Ann. Statist., 29, 5, 1189

Friedman J. H., 2002, Computational Statistics & Data Asialy38, 4,
367, nonlinear Methods and Data Mining

Friedrich S., Koenig M., Wicenec A., 1997, in ESA Special Ruation,
Vol. 402, Hipparcos - Venice '97, Bonnet R. M., Hag E., Becw®. L.,
Emiliani L., Blaauw A., Turon C., Kovalevsky J., Lindegren, Hassan

H., Bouffard M., Strim B., Heger D., Perryman M. A. C., Woltje.,
eds., pp. 441-444

Fruth T. et al., 2012, AJ, 143, 140

Graczyk D. et al., 2011, Acta Astron., 61, 103

Guyon |., Elisseeff A., 2003, J. Mach. Learn. Res., 3, 1157

Hastie T., Tibshirani R., Friedman J. H., 2001, The elemeftstatisti-
cal learning: data mining, inference, and prediction: v&@® full-color
illustrations. New York: Springer-Verlag, p. 533

Haykin S., 1999, Neural Networks: A Comprehensive Foundatinter-
national edition. Prentice Hall

Ho T., 1998, IEEE Transactions on Pattern Analysis and Mechitelli-
gence., 20, 8, 832

Hoffmeister C., Richter G., Wenzel W., 1990, Variable stars

Hoyle B., Rau M. M., Bonnett C., Seitz S., Weller J., 2015, Nhiy No-
tices of the Royal Astronomical Society, 450, 1, 305

Huber M. E., Everett M. E., Howell S. B., 2006, AJ, 132, 633

Hughes G., 1968, IEEE Transactions on Information Theaty, 1, 55

Ivezic Z. et al., 2008, ArXiv e-prints

Kaiser N. et al., 2010, in Proc. SPIE, Vol. 7733, Ground-Hamed Air-
borne Telescopes lll, p. 77330E

Kim D.-W., Bailer-Jones C. A. L., 2016, A&A, 587, A18

Kim D.-W., Protopapas P., Alcock C., Byun Y.-l., Khardon RQ11, in
Astronomical Society of the Pacific Conference Series, 242, Astro-
nomical Data Analysis Software and Systems XX, Evans |. NGOA
mazzi A., Mink D. J., Rots A. H., eds., p. 447

Kim D.-W., Protopapas P., Bailer-Jones C. A. L., Byun Y@hang S.-W.,
Marquette J.-B., Shin M.-S., 2014, A&A, 566, A43

Kim D.-W., Protopapas P., Trichas M., Rowan-Robinson M.akon R.,
Alcock C., Byun Y.-l., 2012, ApJ, 747, 107

Kiss L. L., Bedding T. R., 2003, MNRAS, 343, L79

Kochanek C. S. et al., 2017, ArXiv e-prints

Kolesnikova D. M., Sat L. A., Sokolovsky K. V., Antipin S. \Belinskii
A. A., Samus’ N. N., 2010, Astronomy Reports, 54, 1000

Kolesnikova D. M., Sat L. A., Sokolovsky K. V., Antipin S. VSamus
N. N., 2008, Acta Astron., 58, 279

Kononenko I., Bratko 1., 1991, Machine Learning, 6, 1, 67

Kovacs G., Zucker S., Mazeh T., 2002, A&A, 391, 369

Koztowski S. et al., 2013, ApJ, 775, 92

Laher R. R. et al., 2017, ArXiv e-prints

Lapukhin E. G., Veselkov S. A., Zubareva A. M., 2013, Peremyen
Zvezdy Prilozhenie, 13

Lapukhin E. G., Veselkov S. A., Zubareva A. M., 2016, Peremyen
Zvezdy Prilozhenie, 16

Law N. M. et al., 2009, PASP, 121, 1395

Mason L., Baxter J., Bartlett P., Frean M., 1999, in Proaagsliof the
12th International Conference on Neural Information Pssgegy Sys-
tems, NIPS’'99, MIT Press, Cambridge, MA, USA, pp. 512-518

McQuillan A., Aigrain S., Roberts S., 2012, A&A, 539, A137

Minniti D. et al., 2010, New A, 15, 433

Mowlavi N., 2014, A&A, 568, A78

Nadir E., Othman I., Ahmed O., 2014, Research Journal of idaggbci-
ences, Engineering and Technology, 7, 625

Nair V., Hinton G. E., 2010, in Proceedings of the 27th In&tiomal Con-
ference on International Conference on Machine Learni@LI'10,
Omnipress, USA, pp. 807-814

Nandra K., George I. M., Mushotzky R. F., Turner T. J., Yaqdqhl997,
ApJ, 476, 70

Nun I., Protopapas P., Sim B., Zhu M., Dave R., Castro N., #&iK.,
2015, ArXiv:1506.00010

Ochsenbein F., Bauer P., Marcout J., 2000, A&AS, 143, 23

Pablo H. et al., 2016, PASP, 128, 12, 125001

Palaversa L. et al., 2013, AJ, 146, 101

Parks J. R., Plavchan P., White R. J., Gee A. H., 2014, ApJ5,21

Pawlak M. et al., 2016, ArXiv:1612.06394

Pearson K., 1901, Philosophical Magazine Series 6, 2, M1, 55

Pedregosa F. et al., 2011, Journal of Machine Learning Resek?, 2825

Pepper J. et al., 2007, PASP, 119, 923

© 2017 RAS, MNRASO0O,[IHI7



Pérez-Ortiz M. F., Garcia-Varela A., Quiroz A. J., Salo@a E.,
Hernandez J., 2017, ArXiv:1707.04560

Piquard S., Halbwachs J.-L., Fabricius C., Geckeler R.,ban C.,
Wicenec A., 2001, A&A, 373, 576

Pojmanski G., 2002, Acta Astron., 52, 397

Poleski R. et al., 2010, Acta Astron., 60, 1

Popov A. A., Burdanov A. Y., Zubareva A. M., Krushinsky V. ¥yvaku-
mova E. A., Ivanov K., 2015, Peremennye Zvezdy Prilozhette,

Popowicz A. et al., 2017, ArXiv:1705.09712

Raschka S., 2015, Python Machine Learning. Packt Pubtjshin

Raschka S., 2016, Mixtend

Rauer H. et al., 2014, Experimental Astronomy, 38, 249

Reid W. A., Parker Q. A., 2012, MNRAS, 425, 355

Ricker G. R. et al., 2014, in Society of Photo-Optical Instantation En-
gineers (SPIE) Conference Series, Vol. 9143, Society ofd?Optical
Instrumentation Engineers (SPIE) Conference Series, p. 20

Rijsbergen C. V., 1974, Journal of Documentation, 30, 4, 365

Rose M. B., Hintz E. G., 2007, AJ, 134, 2067

Sabogal B. E., Mennickent R. E., Pietrzyhski G., Gieren 2005, MN-
RAS, 361, 1055

Saito T., Rehmsmeier M., 2015, PLOS ONE, 10, 3,1

Samus’ N. N., Kazarovets E. V., Durlevich O. V., Kireeva N, Ras-
tukhova E. N., 2017, Astronomy Reports, 61, 80

Schapire R. E., 1990, Machine Learning, 5, 2, 197

Shapiro A. I., Solanki S. K., Krivova N. A., Yeo K. L., Schmut¥. K.,
2016, A&A, 589, A46

Shappee B. J. et al., 2014, ApJ, 788, 48

Shin M.-S., Byun Y.-l., 2007, in Astronomical Society of tRacific Con-
ference Series, Vol. 362, The Seventh Pacific Rim Conferencgtellar
Astrophysics, Kang Y. W., Lee H.-W.,, Leung K.-C., Cheng K,-&ls.,
p. 255

Shin M.-S., Sekora M., Byun Y.-I., 2009, MNRAS, 400, 1897

Shin M.-S., Yi H., Kim D.-W.,, Chang S.-W., Byun Y.-l., 2012,JA143,
65

Sigletos G., Paliouras G., Spyropoulos C. D., Hatzopoulos2d05, J.
Mach. Learn. Res., 6, 1751

Smialowski P., Frishman D., Kramer S., 2010, Bioinformsti26, 3, 440

Sokolovsky K., Korotkiy S., Lebedev A., 2014, in AstronomiSociety
of the Pacific Conference Series, Vol. 490, Stell Novae: BadtFuture
Decades, Woudt P. A., Ribeiro V. A. R. M., eds., p. 395

Sokolovsky K. V. et al., 2017, MNRAS, 464, 274

Sokolovsky K. V., Kovalev Y. Y., Kovalev Y. A., Nizhelskiy M., Zheka-
nis G. V., 2009, Astronomische Nachrichten, 330, 199

Sokolovsky K. V., Lebedev A. A., 2017, ArXiv:1702.07715

Sollich P., Krogh A., 1996, Advances in Neural Informatioroéessing
Systems, 8, 190

Soszynski I. et al., 2004, Acta Astron., 54, 347

Soszynski I. et al., 2005, Acta Astron., 55, 331

Soszyhski I. et al., 2012, Acta Astron., 62, 219

Soszynski l. et al., 2003, Acta Astron., 53, 93

Soszynski I. et al., 2009a, Acta Astron., 59, 1

Soszyhski I. et al., 2009b, Acta Astron., 59, 239

Spano M., Mowlavi N., Eyer L., Burki G., Marquette J.-B., losur-Taibi
I., Tisserand P., 2011, A&A, 536, A60

Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Khladinov R.,
2014, Journal of Machine Learning Research, 15, 1929

Stetson P. B., 1996, PASP, 108, 851

Szymanski M. K., 2005, Acta Astron., 55, 43

Talens G. J. J., Spronck J. F. P., Lesage A.-L., Otten G. P, Btuik R.,
Pollacco D., Snellen I. A. G., 2017, A&A, 601, A1l

Tamuz O., Mazeh T., North P., 2006, MNRAS, 367, 1521

Tang S., Grindlay J., Los E., Servillat M., 2013, PASP, 1%, 8

Taylor M. B., 2005, in Astronomical Society of the Pacific @enence Se-
ries, Vol. 347, Astronomical Data Analysis Software andt8ys XIV,
Shopbell P., Britton M., Ebert R., eds., p. 29

Ting K. M., Witten 1. H., 1999, J. Artif. Int. Res., 10, 1, 271

Tisserand P. et al., 2007, A&A, 469, 387

Udalski A., Kubiak M., Szymanski M., 1997, Acta Astron., 81,9

© 2017 RAS, MNRASDOO, [IHI?

17

Udalski A., Soszynski I., Szymanski M., Kubiak M., PietrayinG., Woz-
niak P., Zebrun K., 1999, Acta Astron., 49, 223

Udalski A., Szymanski M., Kubiak M., Pietrzynski G., Sosgknl., Woz-
niak P., Zebrun K., 2000, Acta Astron., 50, 307

Udalski A., Szymanski M. K., Soszynski I., Poleski R., 200&ta As-
tron., 58, 69

Udalski A., Szymanhski M. K., Szymahski G., 2015, Acta Asir, 65, 1

Valverde-Albacete F. J., Pelaez-Moreno C., 2014, PLoS OQ|E 1,
e84217+

Vapnik V., 1996, The Nature of Statistical Learning Theddgw York:
Springer-Verlag

Vorontsov K., 2013, Machine learning. lecture course.
http://www.MachineLearning.ru/wiki

Walker G. et al., 2003, PASP, 115, 1023

Watson C. L., 2006, Society for Astronomical Sciences Ahi8yenpo-
sium, 25, 47

Weiss W. W. et al., 2014, PASP, 126, 573

Welch D. L., Stetson P. B., 1993, AJ, 105, 1813

Wolpert D. H., 1992, Neural Networks, 5, 241

Wood P. R., 2000, PASA, 17, 18

Wood P. R. et al., 1999, in IAU Symposium, Vol. 191, AsymptdBiant
Branch Stars, Le Bertre T., Lebre A., Waelkens C., eds., b. 15

Wozniak P. R. et al., 2004, AJ, 127, 2436

Wyrzykowski L. et al., 2009, MNRAS, 397, 1228

Wyrzykowski L. et al., 2003, Acta Astron., 53, 1

Zadrozny B., Elkan C., 2002, in Proceedings of the Eighth ABIKBKDD
International Conference on Knowledge Discovery and Datairlg,
KDD '02, ACM, New York, NY, USA, pp. 694-699

Zebrun K. et al., 2001, Acta Astron., 51, 317

Zhang M., Bakos GA., Penev K., Csubry Z., Hartman J. D., Bhatti W.,
de Val-Borro M., 2016, PASP, 128, 3, 035001

Zhang X.-B., Deng L.-C., Xin Y., Zhou X., 2003, Chinese J.rast As-
trophys., 3, 151

APPENDIX A: CLIPPED LIGHT CURVE FEATURES

Corrupted photometric measurements result in outlier tpoin a light
curve (Sec.[2, see for example LM&C1292867 in Fig.[B and
LMC_SC2Q134793 in Fig®) that may alter the light curve feature val-
ues while having no relation to object’s variability. Oneywta minimize
this problem is to apply clipping to the light curve beforerguuting the
feature values. Kim & Bailer-Jores (2016) perfoorclipping before com-
puting all the light curve features used for classificatibperiodic variable
stars. As we are concerned with detection of non-periodicsgas well as
periodic ones) that may show variability only occasionalle do not ap-
ply o-clipping. Instead, for a few features that are most seestt outlier
light curve points we compute both their unclipped and @gbwersions
(Table[2) as outlined below.

Al VAST-style clippedo — dgiip

This clipped statistic was used for variability detectiarthe early versions

of the VAST code. From each light curve we drop 5 per cent of brightest
and 5 per cent of faintest points, but not more than 5 poiis feach side
and compute the unweighted standard deviation

1 X )
Oclip = N_1 i;(m —m)

whereN is the number of points in the clipped light curva,is the mean
magnitude of the saty of magnitude measurements remaining after clip-
ping. In many data sets;j, proved to be a more useful variability indicator
thano computed over the non-clipped light curve. It is also moresiwe
then MAD and IQR (Tabl€]2) to rare variability events (flareslipses).
Similar clipping schemes based on removing a predefinedeptarge or
number of brightest and faintest points were applied by JVeasa et &l.
(2013)/ Tang et al| (2013).


http://www.MachineLearning.ru/wiki

18

A2 Clipped Stetson’s indiceskjip and Lejip

Stetson|(1996) suggested variability detection stasistandL that rely on
observations taken close in time being grouped into pdirsoth obser-
vations in a pair deviate in the same direction from the mea#@ghtness,
this indicates the light curve is smooth (as expected forlgaab varying
on a timescale longer than the time difference between teergations in
the pair){ Sokolovsky et al. (2017) suggested a modifiedimessof these
variability indices,Jgip andLjip, that did not form a pair if the magnitude
difference between the two observations was larger thaedefined limit
(indicating that one of the observations in the pair mightteupted). The
clipping in these indices is done on the magnitude diffeeeincpairs, not
on the original light curve. This modification however didtmesult in a
considerable performance improvement compared to thénatig and L
when tested on real deta Sokolovsky etlal. (2017).

Stetson|(1996) advocates for iterative re-weighting adtemative to
clipping. This allows one avoid having a sharp boundary betwthe ob-
servations that are “in” or “out”. In the origindlandL definitions iterative
re-weighting is applied only to the mean magnitude cal@atbut not to
the observations that form pairs.

APPENDIX B: VARIABILITY FEATURE — MAGNITUDE
PLOTS

Figure[B1 presents plots of selected individual variapfitatures (Tablgl2)
as a function of OGLE magnitude. Such plots are typically used to identify
variable objects by selecting a magnitude-dependent fEfitroan individ-

ual index and visually inspecting light curves of all obfeabove the cut-off
(e.gLSokolovsky et @l. 2017).
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Figure B1. Variability feature vsl magnitude plots showing all objects in grey and highlighttandidate variables selected by Mid classifier and confirmed
by visual inspection (see example light curves in Figlilead{®), rejected after visual inspection (Figliré 10) as wellhee known variable stars missed by
the NN classifier (Figur€l2). The IQR is scaleddwf the Gaussian distribution so the numerical values ofwweupper plots may be compared directly.
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