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ABSTRACT
Photometric variability detection is often considered as ahypothesis testing problem: an ob-
ject is variable if the null-hypothesis that its brightnessis constant can be ruled out given the
measurements and their uncertainties. Uncorrected systematic errors limit the practical appli-
cability of this approach to high-amplitude variability and well-behaving data sets. Searching
for a new variability detection technique that would be applicable to a wide range of variability
types while being robust to outliers and underestimated measurement uncertainties, we pro-
pose to consider variability detection as a classification problem that can be approached with
machine learning. We compare several classification algorithms: Logistic Regression (LR),
Support Vector Machines (SVM), k Nearest Neighbors (kNN) Neural Nets (NN), Random
Forests (RF) and Stochastic Gradient Boosting classifier (SGB) applied to 18 features (vari-
ability indices) quantifying scatter and/or correlation between points in a light curve. We use a
subset of OGLE-II Large Magellanic Cloud (LMC) photometry (30265 light curves) that was
searched for variability using traditional methods (168 known variable objects identified) as
the training set and then apply theNN to a new test set of 31798 OGLE-II LMC light curves.
Among 205 candidates selected in the test set, 178 are real variables, 13 low-amplitude vari-
ables are new discoveries. We find that the considered machine learning classifiers are more
efficient (they find more variables and less false candidates) compared to traditional tech-
niques that consider individual variability indices or their linear combination. TheNN, SGB,
SVMandRF show a higher efficiency compared toLR andkNN.

Key words: methods: data analysis, methods:statistical, stars: variables: general

1 INTRODUCTION

A variety of astrophysical phenomena manifest themselves with
optical variability. The incomplete list includes accretion, ejection,
explosions, gravitational lensing, stellar magnetic activity, pulsa-
tions and eclipses. Historically, variable objects were mostly iden-
tified by comparing their brightness recorded at a pair of images
(Hoffmeister, Richter & Wenzel 1990). The photographic images
were compared with a blink-comparator or by placing a positive
image of a photographic plate taken at one epoch on top of the
negative plate taken at a different epoch. Difference imageanalysis
(DIA; Alard & Lupton 1998, Bramich et al. 2016) can be thought
of as a modern software implementation of this idea. The pair-
wise image comparison has the obvious drawback that it can de-
tect only high-amplitude variability: the object’s brightness differ-
ence between the two images should be a few times larger than
measurement errors associated with individual images. To detect
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low-amplitude variability one needs to construct and analyze ob-
ject’s light curve containing multiple measurements in order to ef-
fectively average-out individual measurement errors. Themultiple
measurements may be performed using DIA, point spread func-
tion (PSF) fitting, or aperture photometry. The effect of consider-
ing multiple measurements altogether instead of pair-wiseis illus-
trated by the large number of high-amplitudeδ Scuti/SX Phoeni-
cis stars (HADS) found using digitized photographic platesby
Kolesnikova et al. (2010). These plates were earlier searched for
variability by comparing pairs of images, but this search failed to
identify the majority of HADS variables despite having a compara-
ble accuracy of individual measurements.

Detection of variability in a light curve may be considered a
hypothesis testing problem (Eyer 2005, Huber, Everett & Howell
2006, de Diego 2010, Piquard et al. 2001): an object is vari-
able if the null-hypothesis that its brightness is constantcan be
ruled out. Uncorrected systematic errors and corrupted measure-
ments limit the practical applicability of this approach towell-
behaving data sets. Tests that take into account not only themea-
surements themselves, but also the order (Tamuz, Mazeh & North
2006, Figuera Jaimes et al. 2013, Ferreira Lopes & Cross 2016)
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and times (Stetson 1996, Zhang et al. 2003) at which the measure-
ments were taken were also proposed. The variability detection
threshold for these tests often has to be determined empirically for
a given data set. Sokolovsky et al. (2017) investigated 24 “variabil-
ity indices” (also referred to as “light curve features”) – statistical
characteristics quantifying scatter and correlation between points
in a light curve. The ability of these indices used individually or
in a linear combination to discriminate variable objects from non-
variable ones was compared using multiple real and simulated data
sets.

In this paper we explore a new variable star selection tech-
nique that outperforms all the individual (or linearly combined) in-
dices considered by Sokolovsky et al. (2017). This is achieved by
finding useful non-linear combinations of these indices. Wecon-
sider variability detection not as a hypothesis testing problem, but
as a binary classification problem (variable vs. non-variable ob-
jects) and apply machine learning techniques to solve it. The pro-
posed technique does not depend critically on accurate photometric
error estimates and is not sensitive to individual outlier measure-
ments1. It can be applied toany large set of light curves given a
representative subset of these light curves has been manually clas-
sified as variable and non-variable ones. This subset is usedto train
a machine learning (ML) classifier that will process the restof the
data.

While preparing this paper we learned that the General Vari-
ability Detection module of the Gaia Variability Analysis pipeline
(Eyer et al. 2017) is using a Random Forest classifier trainedon
multiple variability indices computed for variables identified in
the OGLE-IV Gaia south ecliptic pole field by Soszyński et al.
(2012). Earlier, Shin, Sekora & Byun (2009), Shin et al. (2012)
proposed to use multiple variability indices together combining
them with an infinite Gaussian mixture model. The method of
Pawlak et al. (2016), while focusing solely on eclipsing binaries,
is similar in spirit to the method proposed here. The authorsuse
a set of features computed by the BLS period-finding algorithm
(Kovács, Zucker & Mazeh 2002) as an input for the Random For-
est classifier trained on OGLE-III eclipsing binaries (Graczyk et al.
2011) in one of the OGLE-IV (Udalski, Szymański & Szymański
2015) fields. Elorrieta et al. (2016) used machine learning to iden-
tify RRab stars in the VVV survey data (Minniti et al. 2010).
Pérez-Ortiz et al. (2017) propose a set of light curve features ro-
bust to individual outlier measurements and use them to compare
multiple machine learning algorithms on classified OGLE-III light
curves. Taking into account the experience of authors listed above,
we suggest the following points that we try to justify in thiswork:

• Machine learning can be used for variability detectionin gen-
eral, not only for extracting variable objects of specific types,one
type at a time.

1 We use light curve features (MAD, IQR, 1/η ; Table 2) that are by design
not sensitive to outliers (Sokolovsky et al. 2017) and do notdepend on the
estimated photometric errors. While this is not the case forother features
(σ , χ2

red,...) these features will end up having less predictive power com-
pared to the robust features if the sensitivity to outliers or the incorrectly
estimated errors constitute a problem in the given data set.ML techniques
described in Section 3.2 include procedures (bagging, dropout, appropriate
choice of loss function) designed to minimize dependency onindividual ob-
jects with outlier lightcurve feature values (that may result from corrupted
photometry). The OGLE-II andTF1 data we use for tests are plagued with
outlier measurements which do not end up having a critical impact on our
ability to identify variable objects (Sections 4.1 and 4.3).

• This general variability detection problem is tractable for
many different supervised learning algorithms.
• Systematic search for optimal hyperparameters of a learning

algorithm is needed to achieve its best performance.
• Variability search with machine learning is effective evenwith

modest training sample size containing hundreds of known vari-
ables. The sample may be highly imbalanced (few variables and
many constant stars).

The paper is structured as follows: Section 2 describes the test data,
Section 3 describes the proposed variable object selectiontech-
nique and Section 4 discusses the results of its applicationto the
test data while Section 5 summarizes our findings.

2 INPUT DATA

The primary input for variability search is a set of time-series
brightness measurements collected for a number of sources –a
set of light curves. The light curves may be quite diverse even
within one data set. They may have different number of mea-
surements as not all sources are detected and successfully mea-
sured in each image. Measurements of different sources may be
influenced to a different extent by systematic effects that de-
pend on source color or its position on an image. Some measure-
ments get corrupted by random events such as cosmic ray hits
or object’s image falling on a bad pixel. Light curves of vari-
able sources may show a variety of patterns depending on the
variability type and period (or typical timescale for non-periodic
variables). To characterize such diverse light curves in a uni-
form way we extract a set of light curve features (or “variabil-
ity indices”). We use VAST code (Sokolovsky & Lebedev 2017)
to extract the features while other feature extraction codes are
also publicly available (Nun et al. 2015, Kim & Bailer-Jones2016,
Christ, Kempa-Liehr & Feindt 2016). The features computed by
VAST are meant to be used for variabilitydetectionwhile the other
codes are mainly concerned with features useful forclassification
of detected variables, but there is a great deal of overlap between
the features useful for these two tasks. In Section 2.1 we describe
the photometric data set used for our tests and discuss its inherent
biases in Section 2.2. In Section 2.3 we present the utilizedset of
light curve features.

2.1 Light curves

As input data we use a small subset of publicly available Optical
Gravitational Lensing Experiment phase two (OGLE-II) PSF fitting
I -band photometry of the field LMCSC20 towards the Large Mag-
ellanic Cloud (LMC; Szymanski 2005). OGLE-II observationsare
conducted with the 1.3 m Warsaw telescope at the Las Campanas
Observatory, Chile (Udalski, Kubiak & Szymanski 1997). Public
OGLE-II photometry was used earlier to test new variabilityde-
tection techniques by Shin & Byun (2007). OGLE-II LMC data
were searched for various specific types of variable objectsinclud-
ing microlensing events (Wyrzykowski et al. 2009), variable red gi-
ants (Soszynski et al. 2004, Kiss & Bedding 2003, Soszynski et al.
2005), RR Lyrae stars (Soszynski et al. 2003), eclipsing binaries
(Wyrzykowski et al. 2003), cataclysmic variables (Cieslinski et al.
2003), quasars (Eyer 2002), Cepheids (Udalski et al. 1999).
Zebrun et al. (2001) constructed a comprehensive catalog ofcan-
didate variables (of all types) detected with DIA. The field was
also covered by later phases of the OGLE project (Udalski et al.
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2008, Udalski, Szymański & Szymański 2015) as well as other
time-domain surveys including VMC (Cioni et al. 2011), EROS
(Tisserand et al. 2007), MACHO (Alcock et al. 2000, Becker etal.
2005). Overall, the test field is well-studied for variability.

The LMC SC20 data set was manually searched for variable
objects by Sokolovsky et al. (2017). The authors identified 20 new
variable stars hinting that variability detectable in OGLE-II data is
still not fully explored. These findings also highlight the fact that in
practice, one cannot expect to have a complete sample of variables
stars by just searching catalogs of known variables, even insuch
well-studied sky region as the LMC.

The use of the LMCSC20 data set allows us to directly com-
pare the effectiveness of the variability detection technique pro-
posed here to the techniques discussed by Sokolovsky et al. (2017).
Specifically, we want to compare the results obtained with machine
learning to the results of variability search by visual inspection of
light curves, which is the most reliable, but labor-intensive way
of identifying variable objects (hence the relatively small size of
our training sample). The sample consists of 30265 sources with
high-quality (percentage of good measurements Pgood> 98; see
Section 4.1 in Szymanski 2005) light curves each having 262 to
268 points; among them 168 variable sources of various types.
This data set is further randomly split into subsets multiple times
in order to find the most promising variable object selectiontech-
nique as described in Section 3. The full LMCSC20 data set from
Sokolovsky et al. (2017) is used to train the selected best classifier
before applying it to a new data set that was not previously searched
for variability by us. The new data set consists of 31798 OGLE-
II PSF I -band light curves from the adjacent field LMCSC19 se-
lected by applying the same quality cut (Pgood> 98 resulting in
262–268 light curve points). Three variable objects (and 893 non-
variable ones) located in the overlapping sky region present both in
LMC SC19 and LMCSC20 data sets.

Table 1 presents the distribution of variability types avail-
able in the training (LMCSC20) data set and recovered from
the blind test data set (LMCSC19, Section 4.3). We adopted
a published classification of variable objects whenever possible:
eclipsing binaries from Wyrzykowski et al. (2003), Graczyket al.
(2011), Kim et al. (2014), red giant variables from Soszynski et al.
(2005), Fraser, Hawley & Cook (2008), Soszyński et al. (2009b),
Spano et al. (2011), RR Lyrae variables from Soszynski et al.
(2003), Cepheids from Udalski et al. (1999), candidate Be stars
from Sabogal et al. (2005), QSO candidates from Eyer (2002),
Kim et al. (2012), Kozłowski et al. (2013),δ Scuti stars from
Poleski et al. (2010). Soszynski et al. (2004) classified 1546 peri-
odic red giants in the LMC as candidate ellipsoidal variables fol-
lowing the suggestion by Wood et al. (1999), Wood (2000) thatone
of the five period-luminosity sequences observed in LMC red gi-
ants may represent binary systems rather than a mode of pulsa-
tions. Considering thati) physical interpretation of this sequence as
binary systems is not unambiguous;ii) in practice, the light curve
shapes of these objects are indistinguishable from light curves of
some semiregular variables;iii) eclipsing variables with periods
> 10 d showing strong ellipsoidal variations often have bluercol-
ors than the candidate ellipsoidal variables with no eclipses; for the
purpose of this work we group the candidate ellipsoidal variables
with other variable red giants in Table 1. The lists of candiate Be
stars of Sabogal et al. (2005) and QSO candidates of Eyer (2002)
have 99 common objects 11 of which are among the variable ob-
jects in our data sets. In Table 1 we combine them under the label
“blue irregular variables”.

While the discussion below is based on the OGLE-II data,

Table 1.Types of variable objects in the blind test (LMCSC19) and train-
ing (LMC SC20) data sets.

Type LMC SC19 LMCSC20

eclipsing binaries 36 54
variable red giants (L/M/SR/ELL) 54 52

RR Lyrae-type variables 56 26
Cepheids (classical and Type II) 17 20

blue irregular variables (GCAS/BE/QSO) 22 13
δ Scuti stars 1 3

total 186 168

we also performed a similar analysis of two other data sets inves-
tigated by Sokolovsky et al. (2017) that were collected withdif-
ferent telescopes and processed using different source extraction
and photometry software:Kr (Lapukhin, Veselkov & Zubareva
2013, 2016) andTF1 (Burdanov et al. 2016, Popov et al. 2015,
Burdanov, Krushinsky & Popov 2014). The results obtained with
Kr andTF1 are consistent with the ones presented in Sections 4
and 5. The main focus in our investigation was set on the OGLE-II
LMC SC20 data set as many other OGLE-II light curves are readily
available for variability search with the technique described here.

2.2 Sources of bias in the training sample

The training sample may be biased as the list of known variables in
the LMC SC20 data set may not be exhaustive (and therefore some
variable objects may be incorrectly labeled as non-variable). We
try to minimize this by conducting our own variability search (used
also in our previous work, Sokolovsky et al. 2017) based on visual
inspection of light curves instead of relying on published lists of
variables (Sec. 2.1), however this is still likely an approximation to
the complete list of (detectable) variables in the used set of light
curves.

Another source of bias is the limited size of our training sam-
ple (Table 1) that does not nearly represent all variabilitytypes
and all possible variations in amplitude and period or variability
time scale within each type. This translates in a non-trivial way
to an incomplete coverage of the variability features (introduced
in Sec. 2.3) parameter space occupied by variable objects (see the
discussion of learning curves in Sec. 4.2.1). The severity of this
problem is hard to quantify a priori. Positive results of variabil-
ity search in the unseen data described in Sec. 4.3 indicate that
this is not a critical issue. This may partly be attributed tothe fact
that (while relying on the assumption that variable objectsare rare)
the section of the variability features parameter space occupied by
non-variable objects should be sampled well with∼ 30000 exam-
ple non-variable sources in the training set.

2.3 Variability features

We initially considered 24 features listed in Table 2 (a detailed dis-
cussion of these features is presented by Sokolovsky et al. 2017).
Many of them are highly correlated (see Figure 1)2, in fact some
represent the same quantity computed using different weighting

2 biokit Python package was used to generate the plot
https://github.com/biokit/biokit
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Figure 1. Correlation between the light curve features. Color and orientation of each ellipse represent the sign (red and rotated45 degrees clockwise from
vertical - positive while blue and rotated counterclockwise - negative) and eccentricity with color depth code the value of the Pearson correlation coefficient
between the corresponding features (see the color bar). A nearly circular shape and white color indicate close to zero correlation between a pair of features
while a narrow red (blue) ellipse indicates high positive (negative) correlation between features.

or clipping schemes (σ -σclip, Stetson’sK-kurtosis,J-Jtime-Jclip, L-
Ltime-Lclip; see Section A). We dropped the featuresσclip, L, Lclip,
Jclip, MAD, Ltime which are highly correlated to other correspond-
ing features withr > 0.995 (Figure 1). The choice which feature
to keep among a few highly correlated ones was done in a quasi-
random fashion. When processing a really large set of light curves,
it would be wise to consider computational costs of featuresand
keep the one that requires less time to calculate. We checkedthat
the number of remaining features is reasonable usingPrincipal
Component Analysis(PCA; Pearson 1901). Most (95%) of the vari-
ance in features can be explained by 10 PCA-components (Fig-
ure 2). This suggests that at least 10 original features are needed to
describe most of the variance in the data. We also dropped thefea-

turesCSSDand l1 that in the implementation of Sokolovsky et al.
(2017) appeared to be less-informative for variability search. We
tried to log-transform positive features (such asσ or IQR) to make
their distribution closer to the normal but it has not resulted in
higher performance for any of the tested algorithms. Ensemble trees
methods used in our work, Random Forests (RF; Section 3.2.4) and
Stochastic Gradient Boosting (SGB; Section 3.2.5), are invariant
to one-to-one transformations of the input feature data. Our pre-
processing procedure includes scaling features by centering and
standardization for all methods exceptRF andSGB. We note that
to prevent overestimation of classification performance, the data
pre-processing and the feature selection should be done in away
that prevents any information leakage from the sample used to
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Figure 2. Fractional variance explained by each of the PCA-component.
Also known asscree plot(Cattell 1966). Most of the variance can be ex-
plained by 10 PCA components confirming that many light curvefeatures
listed in Table 2 are correlated (see also Figure 1 and Section 4.2).

Table 2.Light curve features (variability indices). Features correlated with
other features withr > 0.995 for the LMCSC20 data set (and excluded
from the final analysis) are marked with italic

Index Reference

weighted standard deviation –σ Kolesnikova et al. (2008)
clippedσ – σclip Section A1

median abs. deviation– MAD Zhang et al. (2016)
interquartile range – IQR Sokolovsky et al. (2017)

reducedχ2 statistic –χ2
red de Diego (2010)

robust median statistic – RoMS Rose & Hintz (2007)
norm. excess variance –σ2

NXS Nandra et al. (1997)
norm. peak-to-peak amp. –v Sokolovsky et al. (2009)

autocorrelation– l1 Kim et al. (2011)
inv. von Neumann ratio – 1/η Shin, Sekora & Byun (2009)

Welch-Stetson index –IWS Welch & Stetson (1993)
flux-independent index –Ifi Ferreira Lopes et al. (2015)

Stetson’sJ index Stetson (1996)
time-weighted Stetson’sJtime Fruth et al. (2012)

clipped Stetson’s Jclip Section A2
Stetson’s Lindex Stetson (1996)

time-weighted Stetson’s Ltime Fruth et al. (2012)
clipped Stetson’s Lclip Section A2

consec. same-sign dev. – CSSDShin, Sekora & Byun (2009)
SB statistic Figuera Jaimes et al. (2013)

excursions –Ex Parks et al. (2014)
excess Abbe value –EA Mowlavi (2014)

Stetson’sK index Stetson (1996)
kurtosis Friedrich, Koenig & Wicenec (1997)

skewness Friedrich, Koenig & Wicenec (1997)

evaluate performance to the one used to build the classifier (e.g.
Smialowski, Frishman & Kramer 2010).

3 VARIABLE STARS IDENTIFICATION AS
CLASSIFICATION PROBLEM

We tackle the problem of variable stars identifications as clas-
sification problem. Classification is asupervisedlearning prob-

lem where one has a set of objectsX, a set of responsesY
and some unknown dependencef : X 7→ Y (target function, e.g.
Hastie, Tibshirani & Friedman 2001, Vorontsov 2013). The prob-
lem is to find (learn) an algorithm (decision function)f ⋆ that ap-
proximates target functionf for all X given only the subsample of
all objects -Xtrain,i with known responsesYtrain,i (called thetrain-
ing sample). Depending on the nature ofY, the problem can be for-
mulated as regression (Y =R), binary (Y = {0,1}) or K-class clas-
sification (Y = {0,1, ...,K}). The objects are characterized by a set
of featuresφ j : X 7→ D j , whereD j could be{0,1} (binary feature),
|D j |< ∞ (nominal or ordinal feature if finiteD j could be ordered)
or D j = R (qualitative feature). The choice of features that capture
properties related to object’s class is crucial for good classification.
The chosen set of features determines the maximum classification
performance that could be achieved for a given problem.3.

When building a classifierf ⋆ that provides high quality pre-
dictions on new unclassified data and given a set of features (that
constrains the maximum achievable quality of classification) one
has to decide what family of algorithmsf ⋆(θ ), parametrized by
some parameter vectorθ , to use. The main concern is that if the
chosen algorithm is not flexible enough to approximatef then it
cannot approach the highest possible performance of classification
on new data no matter how large training sample is used to learn
the parametersθ . In this case, the algorithm prediction has high
bias and it is said that the algorithm isunderfitting. If the algorithm
is too complex (f ⋆ has many unconstrained parametersθ ) it can
spend some of its degrees of freedom on learning noisy patterns
specific to a given finite training sample. Thus algorithm’s pre-
dictions on new data become unstable, sensitive to small changes
in training data. In that case, the predictions have high dispersion
and it is said that the algorithm isoverfitting4. In both cases the
algorithm’s ability to generalize (that is to provide good quality
classification of new data) becomes low. This trade-off governed
by the algorithm’s complexity is called theBias-Variance trade-off
(Hastie, Tibshirani & Friedman 2001).

One can constrain the complexity off ⋆ or tune some other
high-level algorithm property (e.g. algorithm behavior during train-
ing) to reduce the dependence of its predictions on the used finite
training sample (i.e. algorithm dispersion5). To see how much the
algorithm is overfitting one has to apply it to some classifieddata
that are not part of the training sample. Parameters that determine
the algorithm performance on new data but cannot be learned using
training data alone are calledhyperparameters(HP).

In summary, each algorithm has a set of conventional param-
etersθ (e.g. coefficients of features in regression, Section 3.2.2,
weights of neurons inNN, Section 3.2.6) that are learned from
the training sample and hyperparameters that have to be set be-
fore training (e.g. number of trees inRF, Sec. 3.2.4 or number of

3 Classifier with such performance is calledBayes classifier
(Hastie, Tibshirani & Friedman 2001) and its (maximum achievable)
error rate is calledBayesian rate. It should be noted that it is quite theoreti-
cal construction because it uses generally unknown posterior probability of
class membershipP(Y|X) for making its predictions.
4 Overfitting could also be the result of training sample beingunrepresen-
tative of the parent population, e.g. when training data setis small or has
wrongly classified objects. In general, any algorithm that has high perfor-
mance on data used to train it but lower performance on new data is said to
overfit.
5 High-bias algorithms could also have significant dispersion, e.g. multi-
variate linear regression with highly correlated independent variables (fea-
tures).
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hidden layers or number of neurons in each hidden layer inNN,
Section 3.2.6). The hyperparameters include not only the complex-
ity parameters (capacity to learn, e.g. depth of a decision tree, num-
ber of hidden layers and neurons in each layer in neural network,
number of basis learners in ensemble, value of regularization that
penalizes too complex models), but also parameters that control the
process of algorithm training, e.g. speed of learning (the learning
rate in gradient descent methods of learning neural networks). The
optimal set of hyperparameters for a given algorithm largely de-
pends on the data set and might differ even between training sam-
ples of different sizes.

3.1 Performance metric

To decide which variability detection technique works best, we
need to define what exactly do we mean by “best”, in other words–
adopt an appropriate performance metric. As we deal with a highly
imbalanced data set (non-variable stars outnumber variable ones
by a factor of∼ 100, Section 2.1),accuracydefined as the ratio of
correct predictions to the total number of cases evaluated,despite
being most intuitive performance metric is not a proper measure of
classification algorithm performance. A high accuracy score could
be obtained by just labeling all target objects with the majority class
(Kononenko & Bratko 1991, Valverde-Albacete & Peláez-Moreno
2014). To avoid this, one considersPrecision, P = TP/(TP+FP)
and Recall, R= TP/(TP+ FN), as well as their harmonic mean
known asF1-score

F1 = 2PR/(P+R),

where TP is the number of true positives (i.e. true variablesclassi-
fied as variables), FP is the number of false positives (non-variables
classified as variables) and FN is the number of false negatives (true
variables classified as non-variables; Rijsbergen 1974).

Suppose we test a classifier using it to select candidate vari-
ables from a set of light curves for which we already know the right
answer - which light curve shows variability and which does not.
ThenP is the probability that a randomly chosen object from the
list of candidates is a true variable whileR is the probability that a
randomly chosen true variable is in the list of candidates. In reality
there is a trade-off between high values ofRandP, i.e. recovery of
all positive objects (true variables) and contamination byfalse posi-
tives (objects that algorithm wrongly classifies as variables).F1 is a
useful compromise: it has a high value when bothRandP are high,
that is when the classifier does not miss many true variablesand
the majority of objects classified as variables are actual variables.

Most classification algorithms instead of class labels (e.g.
variable/non-variable) return probabilitiespi of i-th object repre-
senting a certain class6. To assign class membership to objects be-
ing classified one has to choose a threshold valuepthresholdsuch
that objects with probabilitypi of belonging to the classY are as-
signed to that class ifpi > pthreshold. P, R and F1 do depend on
the adopted threshold value. This can be utilized if the costof false
positives and false negatives is different. For example, ifwhen vi-
sually inspecting a list of candidate variables we are willing to look
at ten false candidates for every true variable, then for us the cost of
false positives is ten times lower than the cost of false negatives. If
the cost of false positives is high (e.g. if we want to obtain alist of

6 Actually they return some proxy of probability. To make it probability one
has tocalibrate(Zadrozny & Elkan 2002) classifier by comparing predicted
and true frequency of classes for some independent data set.

candidates with the majority of the objects representing true vari-
ability) thenP is a suitable performance metric, if the cost of false
negatives is high (e.g. if we want to recover as many true variables
as possible) thanR can be used. Alternatively, one may use

Fβ = (1+β 2)RP/(R+β 2P),

a score that attachesβ times as much importance toR as P
(Rijsbergen 1974). In case of equal costsF1 works best.

To characterize the model’s performance over all possible
thresholds (i.e. under different values of FP/FN cost ratios), Area
UnderROCCurve (AUC; Fawcett 2006) may be used as a perfor-
mance metric. ROC-curve is a plot ofRagainstFalse Positive Rate
FPR= FP/(FP+TN), where TN is the number of true negatives
(true non-variable stars correctly classified as non-variables). For
binary classificationAUC is the probability that given one positive
and one negative example at random, the classifier rank the positive
example above the negative one.

As shown by Saito & Rehmsmeier (2015) in case of highly
imbalanced dataAUC weakly depends on the algorithm per-
formance (mainly because it considers the number of TN) and
other metrics (such as Area Under Precision-Recall Curve -
AUPRC) should be used instead. To compare methods in similar
to Sokolovsky et al. (2017) manner we decided to search hyperpa-
rameters that maximizeF1-score using the default threshold value
of 0.5.

3.2 Classifiers

We tried several classifiers: Logistic Regression (LR), Support Vec-
tor Machines with Radial Basis Functions (SVM), k Nearest Neigh-
bors (kNN), Neural Nets (NN), Random Forests (RF) and Stochas-
tic Gradient Boosting classifier (SGB). These algorithms use differ-
ent assumptions about classes and target function and use different
heuristics and methods to tackle the problem of classification. We
usescikit-learn Python package (Pedregosa et al. 2011) imple-
mentation ofSVM, RF, kNN, XGBoost7 (Chen & Guestrin 2016)
implementation ofSGBandKeras8 library for NN–classification.
In the following we briefly describe these classifiers and their hy-
perparameters. More information may be found in the officialdoc-
umentation ofscikit-learn, XGBoostandKeras.

3.2.1 k Nearest Neighbors (kNN)

kNN method is based on the hypothesis that similar objects usu-
ally share the same class. The notion of “similarity” is defined in
terms of distance between objects in feature space. The object class
predicted bykNN is the class chosen by the majority ofk closest
neighbors. Despite being quite simple (no need to fit model orlearn
anything) this method is very effective especially in situation where
the hypothesis holds and number of samples is relatively high. The
algorithm is nonparametric i.e. it’s decision surface (boundary be-
tween classes in features space) can be arbitrary complex and ap-
proximate any underlying dependencef (Section 3) given enough
training data. The optimized hyperparameters are number ofneigh-
bors k and weights- the type of weighting being used. We tried

7 https://xgboost.readthedocs.io/en/latest/
8 https://keras.io/
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uniform weights and weights inversely proportional to euclidean
distance to neighbor9.

3.2.2 Logistic Regression (LR)

LR is a generalized regression model used in cases of binary (or
categorical, in general) response variable. It differs from the stan-
dard linear regression with continuous response by the use of link
function that transforms linear combinations of features to binary
response variable.LRmodels the logit(p) = log(p/(1− p)) of pos-
terior class probability membershipp as a linear combination of
features. Setting some threshold value ofp allows one to make the
response binary. We optimized two hyperparameters:C that defines
the level of regularization used (defaultL2-regularization was used
which penalizes complexity by adding term to objective function
being minimized that consists of sum of squares of feature coeffi-
cients) and relative weights of classes.

3.2.3 Support Vector Machine (SVM)

Linear SVM is searching for theoptimal separating hyperplane
in the features space that separates classes best in terms ofmax-
imum distance from closest objects of both classes to the hyper-
plane (Vapnik 1996) thus maximizing themarginbetween classes.
This hyperplane is defined by a (usually) small number of objects
in feature space that are close to decision surface (support vectors)
and that are the hardest to classify. For classification problems with
classes that can’t be separated using linear surface the useof special
kernels reduces the problem to finding the optimal separating hy-
perplane in enlarged (even infinite-dimensional for some kernels)
transformed feature space without explicitly transforming features
(Boser, Guyon & Vapnik 1992). We optimized: kernel type - linear
(linear), polynomial (poly) and Radial Basis Function kernel (rb f ),
degree of polynomial kernel for kernelpoly, C - ”soft margin” reg-
ularization penalty parameter (it determines the relativeinfluence
of wrongly classified points - points on the ”wrong” side of the
optimal hyperplane),gamma- kernel coefficient and the relative
weights of classes.

3.2.4 Random Forest (RF)

RF is an ensemble method. Ensemble methods use the predictions
of several weak learners10 and combines them at once or sequen-
tially to make more efficient predictions than individual learners.
RF uses thebagging(bootstrap aggregation Brieman 1996) method
that combines many weak learners with high variance (which are
overfitting, e.g. too flexible/complex themselves, Section3) trained
on bootstrap samples11 of training data thus reducing variance of
the final estimator. It usually uses a deep decision tree (tree with
many branches) as weak learner. An example decision tree classi-
fier is presented in Figure 3. We use a shallow tree with an easy-
to visualize structure. Hyperparameters of this tree were also opti-
mized for maximum performance as measured byF1 = 0.69 (see

9 We also experimented with some non-euclidean metrics supported in
scikit-learnPython package, e.g.chebyshev, manhattandistances, but their
usage resulted in degraded performance.
10 Weak learner is an algorithm performing not much better thanrandom
guessing
11 Bootstrap sample is a sample of the same size as the original one drawn
with replacement from it.
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3 0 2 6 5

[30097,  168]

k u r t  < =  - 0 . 6 4 6 5
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5 1
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Figure 3. An example decision tree for LMCSC20 data set. Nodes of the
tree show the cuts on variability feature (Table 2) values used to make a
decision at each node. The numbers in each node are the numberof all
objects considered in this node, the number of non-variableand variable
objects.

3.3 for details of measuringF1). RF also uses the idea ofrandom
subspace selection(Ho 1998) (also known as attribute or feature
bagging) that is similar to bagging but instead of subsampling train-
ing objects it consists of using random subsets of features for cre-
ating and growing individual decision trees. This preventsRF from
being focused on small number of highly informative features that
could loose their predictive power on unseen data.

The optimized hyperparameters are:n estimators- the num-
ber of decision trees to use in the ensemble,max f eatures -
the number of features to use in search of best split of the
node, maxdepth - the maximum depth of the individual trees,
min samplessplit - the minimum number of samples in the node
of the decision tree required to make split,min sampleslea f - the
minimum number of samples required to be in the leaf (that is ter-
minal) node of each tree and relative weights of classes.

3.2.5 Stochastic Gradient Boosting (SGB)

The idea ofboosting(Schapire 1990) is to incrementally built clas-
sifier by re-weighting training examples giving more weightto the
misclassified objects. Boosting combines weak learners with high
bias (which are underfitting, i.e. not flexible/complex enough to
approximate underlying relation themselves) sequentially (shallow
decision trees in our work) reducing bias of the final estimator. Gra-
dient boosting treats boosting as optimization algorithm and gen-
eralizes the boosting method to arbitrary differentiable objective
functions (Friedman 2001, Mason et al. 1999). To prevent overfit-
ting, boosting can be combined with bagging and random subset
selection (stochastic gradient boosting) by using only a subsam-
ple of training data on each iteration (Friedman 2002) and a sub-
set of features to decide which should be used for splitting tree
node or creating another tree. We optimized the following hyper-
parameters:learning rate - the scale value for the prediction of
each tree (shrinkage); model complexity parameters:maxdepth-
the maximum depth of the individual trees,gamma- the minimum
objective function reduction required to make a further partition on
a leaf node of the tree,min child weigth - the minimum sum of
weights of all examples in a child of split required to make fur-
ther splits,max delta step- the maximum delta step allowed for
each tree’s weight estimation to be; parameters that makes predic-
tions to be more robust to noise:subsample- subsample ratio of the
training instances, that is fraction of the training data set drawn at
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random without replacement at each iteration,col samplebytree-
the subsample ratio of columns (features) when constructing each
tree,col samplebylevel - subsample ratio of columns (features)
for each split, in each level,scale pos weigth- relative weights of
classes, parameter that controls the model complexity through reg-
ularization:reg lambda- L2-regularization term on weights. The
parametern estimators- number of decision trees in model - was
determined as iteration since which performance measure being
used (F1, but see 3.3 for details) have not improved during the fol-
lowing 30 iterations (early stoppingrule).

3.2.6 Neural Net (NN)

We used a fully connected neural network topology and checked
one and two hidden layers. Though we did not expect complex de-
cision surface geometry for our problem, we decided to try two
hidden layers but include regularization by means of constrains
on neurons weights anddropout12 technique to prevent overfit-
ting. The input and the hidden layer(s) both hadrectified linear
units(Nair & Hinton 2010) activation functions (Haykin 1999) and
the output layer had a sigmoid activation function for probabilistic
predictions. The neuron weights were initialized using thenormal
distribution. The weights update usedStochastic Gradient Decent
(SGD) method on subsets (minibatches) of training data. We op-
timized the following hyperparameters:i) network architecture pa-
rameters – number of hidden layers and neurons in each hidden
layer (size of the input layer was determined by the number offea-
tures); ii) regularization parameters – the value of the dropout at
each layer (except output) and the maximum sum of weights for
each layer;iii) parameters ofSGD (not specific toNN) – the ini-
tial learning ratelr , the decay ratedecay, rate of decreasing learn-
ing rate (learning rate schedule),momentum- parameter that deter-
mines the ”inertia” of neurons weights update withSGD, batch size
- number of data points to use for calculating updates of neurons
weights;iv) classweight - relative weights of classes.nb epochs-
number of epochs, that is the number of times all training data were
used for updating network weights - was determined by the early
stopping rule.

3.3 Hyperarameters tuning

Each algorithm’s hyperparameters (listed in Table 3) were tuned us-
ing theTree of Parzen Estimators (TPE)algorithm (Bergstra et al.
2011) implemented inhyperopt13. TPE is a Bayesian approach to
optimization that models conditional probabilityp(λ |c), whereλ
- the values of hyperparameters,c - some loss function (criterion
one desires to minimize) by two Gaussian Mixture Models. One
(l(λ )) is fitted to the hyperparameters values associated with the
smallest (best) values of loss function and other (g(λ )) is fitted to
the hyperparameter values for all other values of loss function. New
candidates are considered the ones with the lowest value ofg/l .

As noted in Section 3, hyperparameters shouldn’t be learned
from training data. To prevent overfitting we used 4-foldCross-
Validation (Hastie, Tibshirani & Friedman 2001) (CV) during hy-
perparameters search. Each trial with proposed byTPE values of
hyperparameters data was split into 4 folds. The split was made

12 Dropout is a regularization method forNN where a randomly selected
fraction of neurons do not participate in weights update. That helps to avoid
overfitting as shown by (Srivastava et al. 2014)
13 http://hyperopt.github.io/hyperopt/

Table 3. Variability selection algorithms and their hyperparameter values
that maximize theFCV

1 for the test data set LMCSC20.

Algorithm Secion Hyperparameter Value FCV
1

Machine learning algorithms
kNN 3.2.1 n neighbors 6 0.68

weights distance
LR 3.2.2 C 50.78 0.68

classweight 2.65
SVM 3.2.3 kernel rb f 0.80

C 25.05
gamma 0.017

classweight 2.93
RF 3.2.4 n estimators 1400 0.77

max depth 16
max f eatures 5

min samplessplit 16
min sampleslea f 2

classweight 28
SGB 3.2.5 learning rate 0.085 0.79

max depth 6
min child weigth 2.36

subsample 0.44
colsamplebytree 0.35

colsamplebylevel 0.76
gamma 4.16

scale pos weight 4.09
max delta step 2

reg lambda 0.09
NN 3.2.6 num. of hidden layers 1 0.81

num. neurons in hidden layer 13
dropouton input layer 0.00

dropouton hidden layer 0.17
sum of weights, input layer 9.04

sum of weights, hidden layer 5.62
learning rate 0.20

decayrate 0.001
momentum 0.95

classweight 2.03
batch size 1024

Traditional methods
Ja
time selection threshold 5.3σ 0.59
Lb selection threshold 6.5σ 0.53

PCAc
1 selection threshold 7.4σ 0.49

mediand 0.43

a Jtime is the variability index (Table 2) with the highestF1-score for
LMC SC20, but some short-period variables cannot be recovered with this
index.b L index has the highestF1-score in this data set among the indices
that may recover all known variables.c Admixture coefficient of the first
PCA component used as a composite variability index (a linear
combination of individual indices, see Sokolovsky et al. 2017 for details).
d The last line in the table presents the medianF1-score of all variability
indices compared by Sokolovsky et al. (2017).

by preserving the proportion of classes in both samples (“strati-
fied” split). Three of four folds were combined into trainingsample
where the classifier with trial hyperparameters values was fitted and
one fold became the evaluation sample that was used to evaluate the
F1-score. This combination of folds in training/evaluation samples
was done 4 times in such a way that each of the 4 folds was used as
evaluation sample once. To properly combine individualF1-scores
of 4 splits to one value we first found TP and FP for each split, sum
them and then calculateF1-score using obtained values. This pro-
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Figure 4. Precision-Recall curves for 6 algorithms with 12 differentsplits
of data set into folds during CV. Nearly identical performance is apparent
for the four best algorithms.

cedure (unlike direct averaging ofF1-scores of each split) is nearly
free of bias due to highly imbalanced data sets (Forman & Scholz
2010). Such valueFCV

1 (cross-validation estimate ofF1-score) is an
estimate of the algorithm prediction performance (as measured by
F1 metric) on the independent (unseen) data set. This is the quantity
that was subject to maximization usingTPE algorithm.

We did a couple of thousands iterations ofTPEon classifiers
that have many hyperparameters and several hundreds on the rest.
It takes a couple of days of computing time on a Core i5 desktopto
find the best hyperparameters for theRF, SGBandNN algorithms
(the computing time was less for the other algorithms). ForNN and
SGBwe first fixed learning rate on some default values (0.2 and
0.1) and searched for best hyperparameters. Then secondarysearch
was made with the found hyperparameters fixed but now searching
for the best learning rate. For hyperparameters that were set and
not fitted, we tried a few other choices manually, specifically: kNN
with different distance metrics,NN with more hidden layers than
2. We also triedL1-regularization forLR (with poor performance
that could be attributed to the features correlation).

4 RESULTS AND DISCUSSION

4.1 Algorithms performance comparison

The best values ofFCV
1 obtained for each algorithm along with cor-

responding values of tuned hyperparameters are presented in Ta-
ble 3. As expected for small training data set the performance of
classifiers depends on the way the data are split in folds during CV.
Figure 4 shows thePrecision-Recallcurves for each of the 6 algo-
rithms. The hyperparameters used are the best for one (common to
all algorithms) of the CV splits, that was the result of the fixed ran-
dom seed used. The different curves of the same color show theef-
fect of different CV splits on each algorithm performance. Clearly
SVM, RF, GBandNN performance is nearly equal.

LR showed the worst performance as indicated by its
Precision-Recall curve in Figure 4 and the low value ofFCV

1 . Note
however, that the algorithm’sF1-score (as measured byFCV

1 ) is still
above the values reached by the traditional selection basedon in-
dividual variability indices (Table 3). Low performance can be un-
derstood as theLR is a linear model that separates classes with

a linear decision surface that could result in high bias in case of
classes that aren’t linearly separable (e.g. when nonlinear features
combinations predict data better).

kNN also showed lower performance compared to the other
classifiers that could result from the presence of class outliers
(training objects surrounded by objects of different classin the fea-
tures space), that is especially pronounced in case of highly im-
balanced data sets used. Moreover, large number of featurespro-
mote thecurse of dimensionality(Hughes 1968) - a phenomenon
that in high dimensional space, all vectors become remote from a
given vector equally far (Beyer et al. 1999). One has to mention
that the classes of variable and non-variable stars are veryinhomo-
geneous. The class of “variables” includes objects of various types
(ecipsing binaries, pulsating variables) changing their brightness
with different amplitudes and on various timescales. The class of
“non-variables” includes non-variable objects with properly mea-
sured brightness as well as the few objects with corrupted mea-
surements that have high values of the variability indexes but do
not pass visual inspection of their light curves. Thus, the “simi-
larity hypothesis” (see 3.2.1) may fail in this case. Finally, inclu-
sion of some noisy features could also lead to degraded perfor-
mance. We tested the latter possibility by adding an extra data
prepossessing step: selectingKbest best features as measured by
ANOVA F-value between features and class (Guyon & Elisseeff
2003, Nadir, Othman & Ahmed 2014) and found bestKbest= 16
but only with marginal (0.002) gain inFCV

1 .
Formally, the highestFCV

1 was obtained byNN. The bestNN
architecture consists of a fully-connected network structure with
one input layer with 18 neurons (that is determined by number
of features used), one hidden layer with 13 neurons (both with
Rectified Linear Units activation functions) and output layer with
sigmoid activation function. No dropout and relaxed weights con-
strains are preferred by the best model for the input layer.

We also compare classifiers onKr andTF1 data sets described
in Sokolovsky et al. (2017). After excluding the most correlated
features (withr > 0.995) we were left with 20 and 24 features,
respectively. The performance of all considered algorithms on the
first data set is nearly equal (FCV

1 = 0.88 forkNN, 0.90 forLR, RF
andSVM, 0.91 forSGBand 0.92 forNN) and on second data set
the relative performance is about the same as for LMCSC20 data
set, but with lower overall level (resulting from a larger number of
corrupted measurements in this data set) with the bestFCV

1 ≅ 0.78
achieved by theNN classifier.

4.2 Testing further modifications to the algorithms

4.2.1 Learning curves and feature pre-conditioning forLR

To explore the possibilities of further increasing the algorithms per-
formance we first consideredlearning curves(Raschka 2015) – the
dependence of classifier performance (measured byF1-score) on
the amount of training data used (Figure 5). For all the considered
classifiers exceptLR, the learning curves show that theF1-score on
the training data set is higher than the one obtained on the indepen-
dent validation data set and the later is still increasing atmaximal
training sample size. This indicates that using a larger training set
should further increase performance of these algorithms. On the
other hand,LRshows comparable relatively lowF1 values on train-
ing and validation sets. These two characteristic types of learning
curves correspond respectively to high-variance (in our case –kNN,
SVM, RF, SGB, NN) and high-bias (LR) algorithms (see Section 3)
for the used data set.
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Figure 5. Learning curves for the LMCSC20 data set. Solid lines denote
F1-score on training sample, dot-dashed - cross-validation estimate ofF1-
score on unseen data. Shaded regions show uncertainty estimated using 40
different splits of data set in training and validation sample. Two typical
learning curve shapes are evident.LR reveals comparable relatively lowF1

values on both training and validation sets that remain constant with grow-
ing training sample size. This is the sign of a bias of the classifier. The learn-
ing curves of the other classifiers showF1 on the training data set higher
thanF1 obtained on the independent validation data set (i.e. classifiers are
overfitting) that is increasing with training sample size (that implies absence
of a bias).

To improve the performance ofLR we tried to reduce its bias
by accounting for non-linear features interactions. First, we ex-
cluded not only the highly correlated (r > 0.995, Section 2.3) fea-
tures but also the features that show lowF1 max in the original paper
by Sokolovsky et al. (2017) –σ2

NXS andv (Table 2) and the features
with lowest rank (as measured by feature coefficients in regression)
that were lowering the maximum achievable CV estimate ofF1-
score usingRecursive Feature Eliminationmethod (kurtosis and
σ2

NXS again). Then instead of raw features we used their second or-
der polynomial combinations and several first PCA-components of
raw features (the number was determined byTPE-search optimiz-
ing FCV

1 ). This resulted in performance (FCV
1 = 0.78) comparable

to that of other classifiers. We conclude thatLRmay work as well as
the other considered algorithms, but requires a special preparation
of the input data.

4.2.2 Exclude uninformative features

We tried to exclude two features (kurtosis and skewness) that have
the least relation to variability class (as reported byANOVA F-
value between label/feature) from the input of the best classifier,
NN, to check if the removal of these most noisy features increases
performance of theNN classifier. After excluding the features, we
repeated the TPE search for optimal hyperparametes. The result-
ing NN has marginally (∆FCV

1 ≈ 0.005) degraded performance and
simpler architecture (11 instead of 13 neurons on hidden layer,
stronger regularization via dropouts and weight constrains). Ex-
cluding kurtosis and skewness from the input of the third-best
SGBclassifier also results in the slightly decreased performance
(∆FCV

1 ≈ 0.01). This suggests that even the least-important of the
considered features contain some minimal useful information that
can be taken into account by the best classifiersNN andSGB.

To test how many features are necessary to obtain high

F1-scores we usedSGB method as it is pretty straightfor-
ward to get the importance of features using this algorithm
(Hastie, Tibshirani & Friedman 2001). Although we used hyper-
parameters tuned for 18 features after successively excluding the
least important features, we found that with 9 features (J, Jtime, I ,
Magnitude, IQR, 1/η, kurtosis, skewness,Isgn) we can still obtain
FCV

1 as high as 0.77 and using only 3 (J, kurtosis,I ) results inFCV
1

= 0.62.
We also tried to use several PCA-components (Figure 2) as

features instead of the original features listed in Table 2.The ex-
pectation was that using several first PCA-components we mayre-
duce the noise introduced by a number of (nearly) uninformative
features. For this test we usedRF classifier and added the number
of used PCA-components to the list of optimized hyperparameters
(see Table 3). We allowedmax f eaturesto vary from 3 to 5 and
number of PCA-components from 5 to 18. The best value ofFCV

1
was 0.75 with 18 PCA-components andmax f eatures= 4. Thus
the classifier doing its best when using essentially all features. The
degraded performance could be attributed to PCA keeping only lin-
ear combinations of features.

4.2.3 Ensemble combining multiple classifiers

We have tried to combine individual algorithms predictionsus-
ing different ensembling methods. To approximate the case of us-
ing unseen data we used different random seed when splittingthe
sample on train/test splits during cross-validation estimation ofF1-
score. This results in slightly worse performance of the algorithms
that used HP optimized with different CV-splits.

First we usedHard Votingof individual algorithms when the
class that obtains the majority votes of individual classifiers is cho-
sen. We used as all algorithms with weights equal to theirFCV

1
during HP optimization as only four with the highest performance
(NN, SVM, SGBandRF). This resulted inFCV

1 estimates slightly
higher than the best values for individual algorithms used in voting
(with corresponding gains inFCV

1 0.007 and 0.004).
As the predictions of individual algorithms are uncalibrated

we tried ranking averagethe probability outputs of individual
learners. Using all classifiers resulted in degraded performance (-
0.018) relative to the best individual classifier. Averaging ranks of
predictions of four best-performing algorithms gives the sameFCV

1
(0.0006). At the same time using two of the least performanceal-
gorithms in averaging brings some improvement relative to their
individual score (0.032).

Also we combined class and probabilistic predictions of in-
dividual algorithms using higher-lever (meta) algorithm –LR us-
ing theStacking Generalizationor stackingmethod (Wolpert 1992)
both alone and with original (lower-level) features14. Most im-
provement (0.007) was done with using only class predictions of
four best classifiers. This could be the result of uncalibrated proba-
bilistic outputs of the base algorithms.

We also attribute insignificant improvements of this ensem-
bling methods to high correlation between predictions of individ-
ual algorithms (see Figure 6) (Sollich & Krogh 1996). This isbe-
cause all classifiers HP were tuned to have highestFCV

1 using the
same CV splits of the training data. Using different CV splits dur-
ing HP optimization for each of the algorithm or larger training
sample (that will allow calibration of the algorithms probabilistic

14 We usedmlxtendPython package (Raschka 2016).
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Figure 6. Pearson correlation coefficient between algorithms predictions
estimated using CV on LMCSC20 data set. This values are obtained with
one fixed split of the data sample in train/test samples used in CV. Depend-
ing on the split, the presented values are changing with std 0.01-0.02 as
estimated using 30 different splits.

outputs) will make using the ensembling methods more effectively
(Ting & Witten 1999, Sigletos et al. 2005).

4.2.4 Possible future improvements

As can be seen from the learning curves presented at Figure 5,
all high performance classifiers would benefit from increasing the
amount of training data. Also, larger sample of variables also will
allow one to calibrate classifiers and combine multiple classifiers
probabilistic output using e.g. stacking (Section 4.2.3).Finally, as
discussed in Section 4.3, larger sample size will help to escape
overfitting due to small-sized training samples that could be un-
representative of the general population.

A promising way to achieve larger training set size could be
the artificial enlargement of training data (data augmentation; see
e.g. Hoyle et al. 2015) by introducing possible variations to known
constant/variable stars light curves (e.g. changing variability am-
plitude, noise level, addition of instrumental trends (see4.3), etc.).
According to Section 3 another promising way for improvement
is engineering new features that quantify the object’s image shape
profile and position on a CCD chip, proximity to other detected
objects, correlation of magnitude measurements with external pa-
rameters such as seeing and airmass, periodicity in light variations,
shape of the period-folded light curve, etc.

4.3 Blind test on the new data set

The actual performance on unseen data is hard to esti-
mate. As our data sample is quite small, we didn’t hold
out some part of it for testing classifiers on the unseen data
(Hastie, Tibshirani & Friedman 2001). Performance on unseen data
should be slightly lower than the estimations obtained using CV
on the original data set (Table 3). We estimate the effect of this
by considering distributions ofFCV

1 values obtained by classifiers
with best HP from Table 3 for 30 different splits of LMCSC20
data sample on train/evaluation splits (not including the one used
for HP tuning; Figure 7). The obtainedFCV

1 values are lower than
the bestFCV

1 values presented in Table 3 up to 0.05 forSVMand

LR kNN RF SGB SVM NN

0.7

0.8

F 1
-s
co
re

Figure 7. Boxplot of FCV
1 values obtained by classifiers with optimized

HP (see Table 3) for 30 different CV splits of LMCSC20 data on
train/evaluation splits (not including the one used for HP tuning). The box
extends from the lower to upper quartile values of the data, with a line at
the median and narrowing of the box denotes confidence band onmedian.
The whiskers extend from the box to 1.5 of interquantile range to show the
range of the data. Points outside of the whiskers are considered as outliers.

nearly the same forLR (-0.01) and the same forkNN. The typical
error estimated using variance ofFCV

1 for different splits is 0.01.
On the other hand, CV estimate of prediction performance are

pessimistic because only some portion of data is used to fit model
(e.g. 75% in our case of 4-fold CV). ThusF1 on new data set with
the size of LMCSC20 will be higher for high-variance algorithms
(all exceptLR). The value of this bias can be estimated using learn-
ing curves (Figure 5; Hastie, Tibshirani & Friedman 2001). Inter-
esting, thatSVMthat demonstrated the highest drop of performance
on new CV splits should gain the most performance from the en-
larging training sample according to its learning curve (Fig. 5).

Finally, if LMC SC20 is not representative to the overall vari-
able stars population, then we expect degraded performanceof clas-
sifiers on new unseen data sampled from that population (i.e.over-
fitting). See discussion in Section 2.2. This and first item could be
reduced with larger sample size.

We have testedNN classifier with chosen best hyperparame-
ters on unseen data set consisting of 31798 stars (field LMCSC19,
Section 2).NN was fitted on whole training data set (LMCSC20)
with found best hyperparameters and its predictions were evalu-
ated. We used default threshold (0.5) as this was the value used
for hyperparameters optimization. The predicted variables were
checked in existing catalogues (Section 2.1) and by visual inspec-
tion. Among the 205 candidates classified as variable stars,178
occurred to be real variables (TP), 27 were considered FP.

The true variables/false candidates division may not be per-
fect, it involves the following assumptions:

• If a candidate variable is matched with a catalog, it is con-
sidered TP. We neglect the possibility that an object may have no
detectable variations in OGLE-II data while being detectedas vari-
able by another survey.
• We consider TP candidates that are not matched to the cata-

logs of know variables, but upon visual inspection are identified as
variable stars of a known type (Figure 8).
• We consider FP all candidates showing a continuous bright-

ness increase or decline if they are not matched with known vari-
ables from the catalogs (lower right panel of Figure 10). This is
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done to exclude possible long term instrumental trends and appar-
ent variations caused by proper motion (Eyer & Woźniak 2001). It
is possible that some true variables showing long-term brightness
changes may be misattributed to instrumental trends and mislabeled
as FP.

• We consider FP candidates showing elevated scatter in their
light curves (compared to other objects of similar brightness), while
showing no detectable periodicity in these variations (Figure 10).
Specifically, we consider FP objects showing non-periodic dim-
ming or brightening on a timescale shorter then the typical observ-
ing cadence. Young stellar objects and flare stars may show this
type of behaviour. Hot/cold pixels underneath the star image may
also produce light curves of these shapes. The inspection ofimages
associated with individual measurements (that are not available to
us) is necessary to judge if the measurements of a given object are
reliable. We choose to exclude candidates showing this typeof be-
haviour from the list of confirmed variables.

Among the 178 confirmed variable objects in LMCSC19, 12
have never been reported as variable before. Table 4 presents the
list of newly identified variables, their colors from Udalski et al.
(2000) and the suggested classification according to the GCVS
scheme (Samus’ et al. 2017). Table 4 also lists one new variable,
LMC SC19184609, that was not selected as a candidate variable
by the final run of theNN classifier. This variable was identified
by us during a test run with hyperparameters of theNN classifier
differing from the ones listed in Table 3 (but some other variables
were missed in this run). In order to obtain a more exhaustivelist
of variables one needs to lower the classifier’s threshold oropti-
mize its hyperparameters using a different performance metric (as
discussed in Section 3.1). This will come at a price of increased
number of false candidates that have to be rejected during visual
inspection. The need to find an optimal trade-off between therate
of false candidates and search completeness is common to allvari-
ability detection techniques. Machine learning techniques consid-
ered here provide a more favorable ratio of true variables tofalse
detections compared to the traditional methods (Table 3).

The light curves of the new variables are presented in Figure8.
The period search was performed using Deeming (1975) discrete
Fourier transform method implemented in the online period search
tool15. These newly identified variables give an idea of what kind of
variables are missed by previous variability searches in LMC (Sec-
tion 2.1): they have low amplitudes∆I . 0.25, many are periodic
with long periods& 30d.

Eleven variable sources discovered with DIA by Zebrun et al.
(2001) had no classification suggested in the literature. Inorder
to account for these variables in Table 1, we classify them (Ta-
ble 5) based on their light curves (Figure 9) and colors measured
by Udalski et al. (2000).

Figures 8 and 9 present light curves of some of the vari-
ables correctly identified by theNN classifier – TP. Figure 10
illustrates light curves of objects that we believe were incor-
rectly selected by theNN classifier as candidate variables – FP.
Eight known variables were not detected by theNN classifier
(FN; Figure 12), three of them are eclipsing binaries identified
by (Wyrzykowski et al. 2003, Graczyk et al. 2011) and the restare
RR Lyrae stars (Soszynski et al. 2003, Soszyński et al. 2009a). Fig-
ure 11 presents example light curves that were correctly identified
by the classifier as non-variable (TN) while these objects have el-
evated values of some variability features and therefore would ap-

15 http://scan.sai.msu.ru/lk/
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Figure 8.Light curves of the newly identified variable stars listed inTable 4.
These are examples of true positives (TP): candidate variables identified by
theNN classifier that passed visual inspection. Light curves of periodic vari-
ables are phase folded with the indicated light elements. For non-periodic
variables the light curves are plotted as a function of time.

c© 2017 RAS, MNRAS000, 1–17

http://scan.sai.msu.ru/lk/


13

Table 4.New variable stars identified in the field LMCSC19 using theNN classifier with hyperparameters resulting in the bestF1-score for LMCSC20.

Name Position (J2000) I-band range Type Light elements B−V V− I Remarks

LMC SC1912951 05:42:40.86−70:47:08.7 18.50–18.70 SRA/ELL JDmax= 2451192.8+34.0×E 1.047 1.120 (1)
LMC SC1938470 05:42:41.10−70:18:07.2 17.55–17.80 GCAS 0.039 0.040
LMC SC1928995 05:42:42.43−70:28:34.8 17.70–17.90 SR JDmax= 2451623.7+70.2×E 1.364 1.500 (2)
LMC SC1918475 05:42:54.55−70:23:19.7 18.50–18.60 SR JDmax= 2451227.6+36.6×E 1.120 1.297
LMC SC1992867 05:43:13.34−70:15:23.2 17.80–18.00 L 1.203 1.285 (3)
LMC SC1974964 05:43:17.78−70:36:02.7 17.95–18.10 SR JDmax= 2451175.8+91.6×E 1.134 1.171
LMC SC1967152 05:43:24.27−70:44:16.3 16.45–16.65 BE: −0.007 −0.002 (4)
LMC SC1974429 05:43:37.06−70:37:03.3 17.50–17.60 SR JDmax= 2451261.6+31.9×E 1.271 1.364
LMC SC1978093 05:43:41.45−70:32:19.9 17.45–17.60 GCAS 0.065 0.124

LMC SC19184033 05:44:54.88−70:18:02.3 18.40–18.50 SR JDmax= 2450934.5+39.7×E 0.979 1.096
LMC SC19148609 05:44:52.60−71:01:38.1 17.30–17.40 SR JDmax= 2451135.8+29.5×E 1.104 1.206
LMC SC19184609 05:45:00.36−70:17:26.8 18.50–18.60 SR JDmax= 2451132.8+46.4×E 0.444 1.349 (5)
LMC SC19173429 05:45:01.34−70:31:23.1 17.80–17.90 SR JDmax= 2451154.8+86.1×E 0.967 1.041

(1) 2′′ from an X-ray source 1WGA J0542.6−7047. (2) Periodic variations with changing amplitude are superimposed on a long-term declining trend. (3) The
faint outlier point in the light curve (Figure 8) is likely not real. (4) Irregular flares lasting 10–20d superimposed on a slow declining trend. (5) Found in one of
the test run with hyperparameter values different from the ones listed in Table 3.

Table 5.Classification of the variable stars discovered with DIA.

Name Position (J2000) I-band range Type Light elements B−V V− I Remarks

LMC SC1928805 05:42:47.47−70:28:49.6 15.85–15.90 BE 0.125 0.355 (1)
LMC SC1932187 05:42:59.07−70:26:01.0 16.10–16.15 BE 0.028 0.021
LMC SC1941313 05:43:00.57−70:15:45.8 16.35–16.45 L 0.551 0.912

LMC SC19111203 05:43:53.34−70:49:07.4 16.05–16.30 GCAS 0.004
LMC SC2021197 05:45:21.69−70:50:21.3 16.50–16.80 GCAS 0.020 0.017
LMC SC2013936 05:45:22.51−70:57:24.2 16.50–16.55 SR JDmax= 2451290.6+170.0×E 1.572 1.464
LMC SC2083505 05:45:49.71−70:43:18.3 16.70–16.80 SR JDmax= 2450856.8+70.3×E 0.927 1.108 (2)

LMC SC20134793 05:46:29.70−70:43:56.8 17.00–17.05 SR JDmax= 2451657.6+53.0×E 1.423 1.173 (3)
LMC SC20112813 05:46:31.25−71:09:13.6 17.65–17.90 SR JDmax= 2451092.8+21.1×E 0.926 1.175 (4)
LMC SC20131397 05:46:54.52−70:45:01.4 17.50–17.65 SR JDmax= 2451256.6+51.5×E 1.498 1.172 (2,5)
LMC SC20188685 05:47:02.33−70:40:37.2 17.30–17.55 GCAS −0.090 −0.032

(1) B0IIIe spectral type according to Reid & Parker (2012). (2) Periodic brightness variations superimposed on a risingtrend. (3) Three faint outliers are likely
not real. (4) Periodic variations superimposed on a long-term wave. (5) Periodic variations stop around JD2450900 and reappear around JD2451800.

pear as false candidates in a variability search based on individual
features (rather than their ML-based combination used here). As
the light curves of FP and TN show high scatter of brightness mea-
surements while showing no periodicity, it is most likely that the
measurements are corrupted and do not reflect true brightness vari-
ations of these objects. Additional information, first of all - visual
inspection of the images is required to identify one of few effects
corrupting measurements of these objects.

4.4 Applicability to other photometric data sets

The suggested approach to variability detection should be applica-
ble to any large set of light curves given that:

(i) a subset of these light curves isa priori classified into vari-
able and non-variable ones,

(ii) both classes include hundreds of examples or more,
(iii) the examples are representative of variability typesand

measurement artifacts found in the studied set of light curves.

These requirements are easily satisfied for surveys covering a
large fraction of the sky as they include many previously known
variable stars of various types listed in the GCVS and the AAVSO

International Variable Star Index (VSX16; Watson 2006). The
photometric data suitable for the ML-based variability search are
collected by a number of surveys including ASAS (Pojmanski
2002) and ASAS-SN (Shappee et al. 2014, Kochanek et al.
2017), CRTS (Drake et al. 2009), DES (Abbott et al. 2016),
Gaia (Eyer et al. 2017) HATNet (Bakos et al. 2004), KELT
(Pepper et al. 2007), MASCARA (Talens et al. 2017), NMW
(Sokolovsky, Korotkiy & Lebedev 2014), NSVS (Woźniak et al.
2004), Pan-STARRS (Kaiser et al. 2010, Chambers et al. 2016),
PTF (Law et al. 2009), SuperWASP (Butters et al. 2010), TrES
(Alonso et al. 2007), VVV (Minniti et al. 2010) with even
more ambitious surveys being developed, among them LSST
(Ivezic et al. 2008), NGTS (Chazelas et al. 2012), PLATO
(Rauer et al. 2014), TESS (Ricker et al. 2014), ZTF (Laher et al.
2017). The survey parameters such as photometric accuracy,
observing cadence, single or multi-color observations, number of
measurements per object in a single filter and magnitude range
have an impact on the ability to discover various types of variable
objects. The suggested ML-based variability detection approach

16 https://www.aavso.org/vsx/
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Figure 9.Light curves of variable stars with no previous reported classifica-
tion (Table 5). Variability of these stars was discovered with DIA. The light
curves are phased with the inidcated light elements for LMCSC2013936
and LMC SC20134793 and plotted as a function of time for the remaining
stars.

is applicable regardless of the specifics of the survey’s observing
strategy.

Space photometry surveys such as Kepler (Borucki et al.
2010) and CoRoT (Auvergne et al. 2009) are capable of de-
tecting brightness variations caused by magnetic activity(fac-
ulae, star spost; e.g. Shapiro et al. 2016) in Sun-like stars
(Basri, Walkowicz & Reiners 2013) blurring the boundary between
“variable” and “non-variable” stars. The question “is there any de-
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Figure 10. Example light curves of candidate variables rejected during vi-
sual inspection (FP).
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Figure 11.Example light curves having elevated values of individual vari-
ability indexes that werecorrectly rejectedby theNN classifier (TN).

tectable variability” may still be relevant for the fainterstars ob-
served in these surveys. One may be interested in identifying stars
more variable than the Sun (McQuillan, Aigrain & Roberts 2012)
or the ones showing periodic variability (Debosscher et al.2009,
2011) – these problems require a different set of light curvefeatures
than the ones considered here. The variability detection approach
presented here will likely not be useful for space astroseismol-
ogy missions like MOST (Walker et al. 2003), BRITE (Weiss et al.
2014, Pablo et al. 2016, Popowicz et al. 2017) and the upcoming
transit photometry mission CHEOPS (Broeg et al. 2013) as they
observe (with superior accuracy) only one or few stars at a time.

When applying the ML-based variability detection to new data
sets, some light curve features listed in Table 2 may lose their pre-
dictive power while some that are found to be the least informative
for the OGLE-II data set could become useful. When designinga
variability detection procedure for a new set of photometric obser-
vations, it is desirable to go through the full path (Section5) of
feature selection/filtering, choosing multiple ML-algorithms, tun-
ing their HP, checking for possible over/underfitting usinglearning
curves before choosing the best algorithm and its HP values.The
resulting classification performance will be different from the one
reported in Table 3 and could be both better or worse depending on

c© 2017 RAS, MNRAS000, 1–17
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Figure 12. Light curves of known variables missclassified as non-variable
by theNN (FN). While all these variables are periodic, we plot here their
light curves as a function of time rather than phase to highlight similarities
with some FP (Fig. 10) and TN (Fig. 11). Recall that none of theutilized
variability features (Table 2) includes information aboutthe period or the
phased light curve shape.

sample size, light curve quality and the exact set of features used
for classification.

5 CONCLUSIONS

We explore a novel approach to selecting variable objects from a set
of light curves. The basic idea is to treat variability detection as a
two-class classification problem (variable vs. non-variable objects)
despite the intrinsic inhomogeneity of these classes and solve it
with machine learning. The procedure may be summarized as:

(i) Search a representative subset of all light curves for vari-
ability using traditional methods, e.g. by visually inspecting light
curves of all outliers in variability feature – magnitude plots. It is
important to get reasonable confidence that the variabilitysearch in
the subset is exhaustive. This will be our training subset.

(ii) For each light curve compute a set of features (Table 2) that
highlight some or all types of variability while hiding unimportant
differences between the light curves (i.e. the difference in the num-
ber of measurements).

(iii) Choose a machine learning algorithm and tune its hyperpa-
rameters on the training subset using cross-validation as described
in Section 3.3. Table 3 presents an example of how the optimal

hyperparameter values may look like. One may control the trade-
off between the completeness of variability search and the rate of
false detections by selecting performance metrics (e.g.Fβ instead
of F1, Section 3.1) maximized during the optimal hyperparameters
search.

(iv) Train the algorithm with the optimized hyperparameters on
the whole training subset.

(v) Apply the algorithm to the full set of light curves and inspect
the ones classified as variable. One may control the false detections
rate at this stage by changing the classifier threshold.

This procedure works even with a highly imbalanced trainingsub-
sample of a modest size: 168 variables among 30265 OGLE-II light
curves (Section 2.1; see also the cross-validation scores in Fig-
ure 5). Application to an independent set of 31798 OGLE-II light
curves resulted in selection of 205 candidate variables, 27of which
turned out to be false detections and 178 – real variables (12of
them new, Table 4, Figure 8).

To directly compare traditional variability search methods to
the machine learning algorithms considered here, we restricted
ourselves to the data sets used by Sokolovsky et al. (2017) who
compared effectiveness of various variability indices (features). In
terms ofF1-score (Table 3), all machine learning algorithms tested
here outperform each individual variability index as well as their
linear combination.NN, SVM, SGBandRF algorithms show the
best performance (Figure 4). In addition to the OGLE-II datadis-
cussed in details here, these conclusions are confirmed on two other
data sets from Sokolovsky et al. (2017) that were collected with
different telescopes and processed using different sourceextraction
and photometry software (Section 4.1). To improve the variable ob-
jects selection results even further, one needs to use a larger train-
ing sample and engineer additional features that would quantify the
object’s image shape, it’s proximity to other detected objects and
periodicity in light variations. The suggested ML-based variability
detection technique should be applicable to any large (& 104) set
of light curves given that a representative sub-sample of these light
curves is a priori classified as “constant” or “variable” by other
means (Section 4.4).
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APPENDIX A: CLIPPED LIGHT CURVE FEATURES

Corrupted photometric measurements result in outlier points in a light
curve (Sec. 2, see for example LMCSC1992867 in Fig. 8 and
LMC SC20134793 in Fig 9) that may alter the light curve feature val-
ues while having no relation to object’s variability. One way to minimize
this problem is to apply clipping to the light curve before computing the
feature values. Kim & Bailer-Jones (2016) performσ -clipping before com-
puting all the light curve features used for classification of periodic variable
stars. As we are concerned with detection of non-periodic stars (as well as
periodic ones) that may show variability only occasionally, we do not ap-
ply σ -clipping. Instead, for a few features that are most sensitive to outlier
light curve points we compute both their unclipped and clipped versions
(Table 2) as outlined below.

A1 VAST-style clippedσ – σclip

This clipped statistic was used for variability detection in the early versions
of the VAST code. From each light curve we drop 5 per cent of brightest
and 5 per cent of faintest points, but not more than 5 points from each side
and compute the unweighted standard deviation

σclip =

√

1
N−1

N

∑
i=1

(mi − m̄)2

whereN is the number of points in the clipped light curve, ¯m is the mean
magnitude of the setmi of magnitude measurements remaining after clip-
ping. In many data setsσclip proved to be a more useful variability indicator
thanσ computed over the non-clipped light curve. It is also more sensitive
then MAD and IQR (Table 2) to rare variability events (flares,eclipses).
Similar clipping schemes based on removing a predefined percentage or
number of brightest and faintest points were applied by Palaversa et al.
(2013), Tang et al. (2013).
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A2 Clipped Stetson’s indicesJclip and Lclip

Stetson (1996) suggested variability detection statistics J andL that rely on
observations taken close in time being grouped into pairs. If both obser-
vations in a pair deviate in the same direction from the mean brightness,
this indicates the light curve is smooth (as expected for an object varying
on a timescale longer than the time difference between the observations in
the pair). Sokolovsky et al. (2017) suggested a modified versions of these
variability indices,Jclip andLclip, that did not form a pair if the magnitude
difference between the two observations was larger than a predefined limit
(indicating that one of the observations in the pair might becorrupted). The
clipping in these indices is done on the magnitude difference in pairs, not
on the original light curve. This modification however did not result in a
considerable performance improvement compared to the original J andL
when tested on real data Sokolovsky et al. (2017).

Stetson (1996) advocates for iterative re-weighting as an alternative to
clipping. This allows one avoid having a sharp boundary between the ob-
servations that are “in” or “out”. In the originalJ andL definitions iterative
re-weighting is applied only to the mean magnitude calculation, but not to
the observations that form pairs.

APPENDIX B: VARIABILITY FEATURE – MAGNITUDE
PLOTS

Figure B1 presents plots of selected individual variability features (Table 2)
as a function of OGLEI magnitude. Such plots are typically used to identify
variable objects by selecting a magnitude-dependent cut-off for an individ-
ual index and visually inspecting light curves of all objects above the cut-off
(e.g. Sokolovsky et al. 2017).
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Figure B1.Variability feature vs.I magnitude plots showing all objects in grey and highlighting candidate variables selected by theNN classifier and confirmed
by visual inspection (see example light curves in Figures 8 and 9), rejected after visual inspection (Figure 10) as well as the known variable stars missed by
theNN classifier (Figure 12). The IQR is scaled toσ of the Gaussian distribution so the numerical values of the two upper plots may be compared directly.
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